Documentation Verification Report

Embedding

πŸ“ Source: Mathlib/Data/Real/Embedding.lean

Statistics

MetricCount
DefinitionsembedReal, embedRealFun, ratLt, ratLt'
4
TheoremsembedRealFun_add, embedRealFun_strictMono, embedRealFun_zero, embedReal_apply, embedReal_injective, embedReal_one, exists_orderAddMonoidHom_real_injective, mkRat_mem_ratLt, ratLt'_add, ratLt'_bddAbove, ratLt'_nonempty, ratLt_add, ratLt_bddAbove, ratLt_nonempty, mul_smul_one_lt_iff, num_le_nat_mul_den, num_smul_one_lt_den_smul_add
17
Total21

Archimedean

Definitions

NameCategoryTheorems
embedReal πŸ“–CompOp
3 mathmath: embedReal_apply, embedReal_injective, embedReal_one
embedRealFun πŸ“–CompOp
4 mathmath: embedRealFun_add, embedReal_apply, embedRealFun_zero, embedRealFun_strictMono
ratLt πŸ“–CompOp
4 mathmath: ratLt_add, ratLt_bddAbove, mkRat_mem_ratLt, ratLt_nonempty
ratLt' πŸ“–CompOp
3 mathmath: ratLt'_nonempty, ratLt'_add, ratLt'_bddAbove

Theorems

NameKindAssumesProvesValidatesDepends On
embedRealFun_add πŸ“–mathematicalβ€”embedRealFun
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
Real
Real.instAdd
β€”embedRealFun.eq_1
ratLt'_add
csSup_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
ratLt'_nonempty
ratLt'_bddAbove
embedRealFun_strictMono πŸ“–mathematicalβ€”StrictMono
Real
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instPreorder
embedRealFun
β€”sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
sub_add_cancel
lt_of_sub_pos
Real.instIsOrderedAddMonoid
embedRealFun_add
add_sub_cancel_right
arch
Int.natAbs_of_isUnit
eq_ratCast
RingHom.instRingHomClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
one_smul
LE.le.trans_lt
nsmul_lt_nsmul_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
lt_csSup_of_lt
ratLt'_bddAbove
Int.instZeroLEOneClass
embedRealFun_zero πŸ“–mathematicalβ€”embedRealFun
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Real
Real.instZero
β€”le_antisymm
csSup_le
ratLt'_nonempty
Rat.cast_nonpos
Real.instIsStrictOrderedRing
Rat.num_nonpos
LT.lt.le
neg_of_smul_neg_right
SMulPosReflectLE.toSMulPosReflectLT
SMulPosStrictMono.toSMulPosReflectLE
instSMulPosStrictMonoIntOfIsOrderedAddMonoid
zero_le_one
Set.image_congr
eq_ratCast
RingHom.instRingHomClass
nsmul_zero
le_csSup_iff
ratLt'_bddAbove
mem_upperBounds
smul_neg_iff_of_neg_left
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
instPosSMulStrictMonoIntOfIsOrderedAddMonoid
PosSMulMono.toPosSMulReflectLT
PosSMulStrictMono.toPosSMulMono
zero_lt_one
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
exists_rat_btwn
Real.instArchimedean
embedReal_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidHom
Real
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instPreorder
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Real.instAddMonoid
OrderAddMonoidHom.instFunLike
embedReal
embedRealFun
β€”β€”
embedReal_injective πŸ“–mathematicalβ€”Real
DFunLike.coe
OrderAddMonoidHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instPreorder
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Real.instAddMonoid
OrderAddMonoidHom.instFunLike
embedReal
β€”StrictMono.injective
embedRealFun_strictMono
embedReal_one πŸ“–mathematicalβ€”DFunLike.coe
OrderAddMonoidHom
Real
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instPreorder
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Real.instAddMonoid
OrderAddMonoidHom.instFunLike
embedReal
Real.instOne
β€”embedReal_apply
le_antisymm
csSup_le
ratLt'_nonempty
Nat.cast_one
mul_one
one_mul
LT.lt.le
smul_lt_smul_iff_of_pos_right
instSMulPosStrictMonoIntOfIsOrderedAddMonoid
SMulPosReflectLE.toSMulPosReflectLT
SMulPosStrictMono.toSMulPosReflectLE
zero_lt_one
Real.instIsStrictOrderedRing
eq_ratCast
RingHom.instRingHomClass
natCast_zsmul
le_csSup_iff
ratLt'_bddAbove
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
exists_rat_btwn
Real.instArchimedean
exists_orderAddMonoidHom_real_injective πŸ“–mathematicalβ€”Real
DFunLike.coe
OrderAddMonoidHom
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.instPreorder
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
Real.instAddMonoid
OrderAddMonoidHom.instFunLike
β€”subsingleton_or_nontrivial
Function.injective_of_subsingleton
exists_ne
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
abs_ne_zero
embedReal_injective
mkRat_mem_ratLt πŸ“–mathematicalβ€”Set
Set.instMembership
ratLt
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
β€”Set.mem_setOf
mul_comm
smul_smul
natCast_zsmul
smul_lt_smul_iff_of_pos_left
instPosSMulStrictMonoNatOfIsOrderedAddMonoid
PosSMulMono.toPosSMulReflectLT
instPosSMulMonoNatOfIsOrderedAddMonoid
ratLt'_add πŸ“–mathematicalβ€”ratLt'
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
Set
Real
Set.add
Real.instAdd
β€”ratLt'.eq_1
ratLt_add
Set.image_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
ratLt'_bddAbove πŸ“–mathematicalβ€”BddAbove
Real
Real.instLE
ratLt'
β€”Monotone.map_bddAbove
Rat.cast_mono
Real.instIsStrictOrderedRing
ratLt_bddAbove
ratLt'_nonempty πŸ“–mathematicalβ€”Set.Nonempty
Real
ratLt'
β€”Set.image_nonempty
ratLt_nonempty
ratLt_add πŸ“–mathematicalβ€”ratLt
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
Set
Set.add
β€”Set.ext
Set.mem_add
arch
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Set.mem_setOf_eq
Mathlib.Tactic.Contrapose.contrapose₃
zero_nsmul
mul_ne_zero
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Rat.den_ne_zero
existsUnique_add_zsmul_mem_Ico
zero_lt_one
mkRat_mem_ratLt
smul_smul
zero_add
sub_add_cancel
le_sub_iff_add_le
Mathlib.Tactic.Abel.subst_into_addg
Mathlib.Tactic.Abel.term_atomg
Mathlib.Tactic.Abel.unfold_sub
Mathlib.Tactic.Abel.subst_into_negg
Mathlib.Tactic.Abel.term_neg
neg_zero
Mathlib.Tactic.Abel.term_add_constg
Mathlib.Tactic.Abel.term_add_termg
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
add_zero
sub_le_iff_le_add
smul_add
smul_sub
lt_of_lt_of_le
lt_add_of_pos_left
LE.le.trans
sub_smul
sub_lt_comm
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
natCast_zsmul
Rat.mkRat_add_mkRat_of_den
add_sub_cancel
Rat.mkRat_num_den'
num_smul_one_lt_den_smul_add
ratLt_bddAbove πŸ“–mathematicalβ€”BddAbove
ratLt
β€”arch
zero_lt_one
ratLt.eq_1
mem_upperBounds
num_le_nat_mul_den
LT.lt.le
natCast_zsmul
Nat.cast_one
mul_one
ratLt_nonempty πŸ“–mathematicalβ€”Set.Nonempty
ratLt
β€”lt_trichotomy
arch
zero_lt_one
neg_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
lt_of_lt_of_le
add_neg_cancel
Int.cast_neg
Int.cast_natCast
neg_smul
natCast_zsmul
one_smul
Int.cast_one
nsmul_zero
Int.natAbs_of_isUnit
LE.le.trans_lt
nsmul_lt_nsmul_iff_left
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
mul_smul_one_lt_iff πŸ“–mathematicalβ€”Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
β€”mul_comm
SemigroupAction.mul_smul
natCast_zsmul
lt_of_smul_lt_smul_left
PosSMulMono.toPosSMulReflectLT
PosSMulStrictMono.toPosSMulMono
instPosSMulStrictMonoIntOfIsOrderedAddMonoid
zsmul_lt_zsmul_right
num_le_nat_mul_den πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
β€”β€”le_of_smul_le_smul_right
SMulPosStrictMono.toSMulPosReflectLE
instSMulPosStrictMonoIntOfIsOrderedAddMonoid
LE.le.trans
mul_comm
smul_smul
natCast_zsmul
nsmul_le_nsmul_right
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
num_smul_one_lt_den_smul_add πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddMonoid.toNatSMul
SubNegMonoid.toAddMonoid
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
β€”mul_comm
mul_smul_one_lt_iff
Rat.add_num_den'
smul_smul
smul_lt_smul_iff_of_pos_left
instPosSMulStrictMonoIntOfIsOrderedAddMonoid
PosSMulMono.toPosSMulReflectLT
PosSMulStrictMono.toPosSMulMono
add_smul
smul_add
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.cast_mul
mul_assoc
smul_eq_mul
smul_assoc
AddCommGroup.intIsScalarTower

---

← Back to Index