Documentation Verification Report

Sqrt

πŸ“ Source: Mathlib/Data/Real/Sqrt.lean

Statistics

MetricCount
DefinitionsevalNNRealSqrt, evalSqrt, sqrtHom, «term√_»
4
Theoremscontinuous_sqrt, isSquare, le_sqrt_iff_sq_le, mul_self_sqrt, one_le_sqrt, sq_sqrt, sqrt_div, sqrt_eq_iff_eq_sq, sqrt_eq_one, sqrt_eq_zero, sqrt_inv, sqrt_le_iff_le_sq, sqrt_le_one, sqrt_le_sqrt, sqrt_lt_sqrt, sqrt_mul, sqrt_mul_self, sqrt_one, sqrt_pos, sqrt_pos_of_pos, sqrt_sq, sqrt_zero, sum_mul_le_sqrt_mul_sqrt, sum_sqrt_mul_sqrt_le, abs_le_sqrt, coe_sqrt, comap_sqrt_atTop, continuous_sqrt, div_sqrt, floor_real_sqrt_eq_nat_sqrt, inv_sqrt_two_sub_one, isSquare_iff, le_sqrt, le_sqrt', le_sqrt_of_sq_le, lt_sq_of_sqrt_lt, lt_sqrt, lt_sqrt_of_sq_lt, map_sqrt_atTop, mul_self_sqrt, nat_floor_real_sqrt_eq_nat_sqrt, nat_sqrt_le_real_sqrt, neg_sqrt_le_of_sq_le, neg_sqrt_lt_of_sq_lt, one_le_sqrt, one_lt_sqrt_two, real_sqrt_le_nat_sqrt_succ, real_sqrt_lt_nat_sqrt_succ, sq_le, sq_lt, sq_sqrt, sq_sqrt', sqrt_div, sqrt_div', sqrt_div_self, sqrt_div_self', sqrt_eq_cases, sqrt_eq_iff_eq_sq, sqrt_eq_iff_mul_self_eq, sqrt_eq_iff_mul_self_eq_of_pos, sqrt_eq_one, sqrt_eq_zero, sqrt_eq_zero', sqrt_eq_zero_of_nonpos, sqrt_inj, sqrt_inv, sqrt_le_iff, sqrt_le_left, sqrt_le_one, sqrt_le_sqrt, sqrt_le_sqrt_iff, sqrt_le_sqrt_iff', sqrt_lt, sqrt_lt', sqrt_lt_sqrt, sqrt_lt_sqrt_iff, sqrt_lt_sqrt_iff_of_pos, sqrt_monotone, sqrt_mul, sqrt_mul', sqrt_mul_self, sqrt_mul_self_eq_abs, sqrt_ne_zero, sqrt_ne_zero', sqrt_nonneg, sqrt_one, sqrt_one_add_le, sqrt_pos, sqrt_pos_of_pos, sqrt_prod, sqrt_sq, sqrt_sq_eq_abs, sqrt_two_lt_three_halves, sqrt_zero, strictMonoOn_sqrt, sum_mul_le_sqrt_mul_sqrt, sum_sqrt_mul_sqrt_le, tendsto_sqrt_atTop
98
Total102

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalNNRealSqrt πŸ“–CompOpβ€”
evalSqrt πŸ“–CompOpβ€”

NNReal

Definitions

NameCategoryTheorems
sqrtHom πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_sqrt πŸ“–mathematicalβ€”Continuous
NNReal
instTopologicalSpace
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
sqrt
β€”OrderIso.continuous
instOrderTopology
isSquare πŸ“–mathematicalβ€”IsSquare
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”mul_self_sqrt
le_sqrt_iff_sq_le πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
DFunLike.coe
OrderIso
instFunLikeOrderIso
sqrt
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
β€”OrderIso.to_galoisConnection
mul_self_sqrt πŸ“–mathematicalβ€”NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
sqrt
β€”sq
sq_sqrt
one_le_sqrt πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instOneNNReal
DFunLike.coe
OrderIso
instFunLikeOrderIso
sqrt
β€”sqrt_one
sqrt_le_sqrt
sq_sqrt πŸ“–mathematicalβ€”NNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
sqrt
β€”OrderIso.symm_apply_apply
sqrt_div πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
sqrt
instDiv
β€”map_divβ‚€
MonoidWithZeroHom.monoidWithZeroHomClass
sqrt_eq_iff_eq_sq πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
sqrt
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
β€”Equiv.apply_eq_iff_eq_symm_apply
sqrt_eq_one πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
sqrt
instOneNNReal
β€”one_pow
sqrt_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
sqrt
instZeroNNReal
β€”zero_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
sqrt_inv πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
sqrt
instInv
β€”map_invβ‚€
MonoidWithZeroHom.monoidWithZeroHomClass
sqrt_le_iff_le_sq πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
DFunLike.coe
OrderIso
instFunLikeOrderIso
sqrt
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
β€”OrderIso.to_galoisConnection
sqrt_le_one πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
DFunLike.coe
OrderIso
instFunLikeOrderIso
sqrt
instOneNNReal
β€”sqrt_one
sqrt_le_sqrt
sqrt_le_sqrt πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
DFunLike.coe
OrderIso
instFunLikeOrderIso
sqrt
β€”OrderIso.le_iff_le
sqrt_lt_sqrt πŸ“–mathematicalβ€”NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
sqrt
β€”OrderIso.lt_iff_lt
sqrt_mul πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
sqrt
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”sqrt_eq_iff_eq_sq
mul_pow
sq_sqrt
sqrt_mul_self πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
sqrt
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
β€”sq
sqrt_sq
sqrt_one πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
sqrt
instOneNNReal
β€”β€”
sqrt_pos πŸ“–mathematicalβ€”NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
sqrt
β€”instCanonicallyOrderedAdd
sqrt_pos_of_pos πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
DFunLike.coe
OrderIso
Preorder.toLE
instFunLikeOrderIso
sqrt
β€”sqrt_pos
sqrt_sq πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
sqrt
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
β€”OrderIso.apply_symm_apply
sqrt_zero πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
sqrt
instZeroNNReal
β€”β€”
sum_mul_le_sqrt_mul_sqrt πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DFunLike.coe
OrderIso
instFunLikeOrderIso
sqrt
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”LE.le.trans_eq
le_sqrt_iff_sq_le
Finset.sum_mul_sq_le_sq_mul_sq
instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
instCanonicallyOrderedAdd
sqrt_mul
sum_sqrt_mul_sqrt_le πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
DFunLike.coe
OrderIso
instFunLikeOrderIso
sqrt
β€”Finset.sum_congr
sq_sqrt
sum_mul_le_sqrt_mul_sqrt

Real

Definitions

NameCategoryTheorems
Β«term√_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
abs_le_sqrt πŸ“–mathematicalReal
instLE
Monoid.toNatPow
instMonoid
abs
lattice
instAddGroup
sqrt
β€”sqrt_sq_eq_abs
sqrt_le_sqrt
coe_sqrt πŸ“–mathematicalβ€”NNReal.toReal
DFunLike.coe
OrderIso
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
instFunLikeOrderIso
NNReal.sqrt
sqrt
β€”sqrt.eq_1
toNNReal_coe
comap_sqrt_atTop πŸ“–mathematicalβ€”Filter.comap
Real
sqrt
Filter.atTop
instPreorder
β€”NNReal.comap_coe_atTop
OrderIso.comap_atTop
comap_toNNReal_atTop
continuous_sqrt πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
sqrt
β€”Continuous.comp'
NNReal.continuous_coe
NNReal.continuous_sqrt
continuous_real_toNNReal
div_sqrt πŸ“–mathematicalβ€”Real
DivInvMonoid.toDiv
instDivInvMonoid
sqrt
β€”β€”
floor_real_sqrt_eq_nat_sqrt πŸ“–mathematicalβ€”Int.floor
Real
instRing
linearOrder
instFloorRing
sqrt
instNatCast
β€”Int.floor_eq_iff
nat_sqrt_le_real_sqrt
real_sqrt_lt_nat_sqrt_succ
inv_sqrt_two_sub_one πŸ“–mathematicalβ€”Real
instInv
instSub
sqrt
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
instOne
instAdd
β€”β€”
isSquare_iff πŸ“–mathematicalβ€”IsSquare
Real
instMul
instLE
instZero
β€”IsSquare.nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
instIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
mul_self_sqrt
le_sqrt πŸ“–mathematicalReal
instLE
instZero
sqrt
Monoid.toNatPow
instMonoid
β€”le_iff_le_iff_lt_iff_lt
sqrt_lt
le_sqrt' πŸ“–mathematicalReal
instLT
instZero
instLE
sqrt
Monoid.toNatPow
instMonoid
β€”le_iff_le_iff_lt_iff_lt
sqrt_lt'
le_sqrt_of_sq_le πŸ“–mathematicalReal
instLE
Monoid.toNatPow
instMonoid
sqrtβ€”sq_le
LE.le.trans
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
instIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
lt_sq_of_sqrt_lt πŸ“–mathematicalReal
instLT
sqrt
Monoid.toNatPow
instMonoid
β€”LE.le.trans_lt
sqrt_nonneg
sqrt_lt_sqrt_iff_of_pos
sq_pos_of_pos
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
sqrt_sq
LT.lt.le
lt_sqrt πŸ“–mathematicalReal
instLE
instZero
instLT
sqrt
Monoid.toNatPow
instMonoid
β€”sqrt_lt_sqrt_iff
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
instIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sqrt_sq
lt_sqrt_of_sq_lt πŸ“–mathematicalReal
instLT
Monoid.toNatPow
instMonoid
sqrtβ€”sq_lt
map_sqrt_atTop πŸ“–mathematicalβ€”Filter.map
Real
sqrt
Filter.atTop
instPreorder
β€”map_toNNReal_atTop
OrderIso.map_atTop
NNReal.map_coe_atTop
mul_self_sqrt πŸ“–mathematicalReal
instLE
instZero
instMul
sqrt
β€”sqrt.eq_1
NNReal.coe_mul
NNReal.mul_self_sqrt
coe_toNNReal
nat_floor_real_sqrt_eq_nat_sqrt πŸ“–mathematicalβ€”Nat.floor
Real
semiring
partialOrder
FloorRing.toFloorSemiring
instRing
linearOrder
instIsStrictOrderedRing
instFloorRing
sqrt
instNatCast
β€”instIsStrictOrderedRing
Nat.floor_eq_iff
sqrt_nonneg
nat_sqrt_le_real_sqrt
real_sqrt_lt_nat_sqrt_succ
nat_sqrt_le_real_sqrt πŸ“–mathematicalβ€”Real
instLE
instNatCast
sqrt
β€”le_sqrt
Nat.cast_nonneg
instIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
Nat.sqrt_le'
neg_sqrt_le_of_sq_le πŸ“–mathematicalReal
instLE
Monoid.toNatPow
instMonoid
instNeg
sqrt
β€”sq_le
LE.le.trans
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
instIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
neg_sqrt_lt_of_sq_lt πŸ“–mathematicalReal
instLT
Monoid.toNatPow
instMonoid
instNeg
sqrt
β€”sq_lt
one_le_sqrt πŸ“–mathematicalβ€”Real
instLE
instOne
sqrt
β€”sqrt_one
sqrt_le_sqrt_iff'
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
one_lt_sqrt_two πŸ“–mathematicalβ€”Real
instLT
instOne
sqrt
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
sqrt_one
sqrt_lt_sqrt
le_of_lt
Mathlib.Meta.Positivity.pos_of_isNat
instIsOrderedRing
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
real_sqrt_le_nat_sqrt_succ πŸ“–mathematicalβ€”Real
instLE
sqrt
instNatCast
instAdd
instOne
β€”LT.lt.le
real_sqrt_lt_nat_sqrt_succ
real_sqrt_lt_nat_sqrt_succ πŸ“–mathematicalβ€”Real
instLT
sqrt
instNatCast
instAdd
instOne
β€”sqrt_lt
instIsOrderedRing
Nat.cast_zero
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instZeroLEOneClass
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
Nat.lt_succ_sqrt'
sq_le πŸ“–mathematicalReal
instLE
instZero
Monoid.toNatPow
instMonoid
instNeg
sqrt
β€”instIsOrderedAddMonoid
abs_le_sqrt
abs_le
sq_abs
le_sqrt
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
covariant_swap_add_of_covariant_add
sq_lt πŸ“–mathematicalβ€”Real
instLT
Monoid.toNatPow
instMonoid
instNeg
sqrt
β€”abs_lt
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
sq_abs
lt_sqrt
abs_nonneg
sq_sqrt πŸ“–mathematicalReal
instLE
instZero
Monoid.toNatPow
instMonoid
sqrt
β€”sq
mul_self_sqrt
sq_sqrt' πŸ“–mathematicalβ€”Real
Monoid.toNatPow
instMonoid
sqrt
instMax
instZero
β€”lt_trichotomy
sqrt_div πŸ“–mathematicalReal
instLE
instZero
sqrt
DivInvMonoid.toDiv
instDivInvMonoid
β€”division_def
sqrt_mul
sqrt_inv
sqrt_div' πŸ“–mathematicalReal
instLE
instZero
sqrt
DivInvMonoid.toDiv
instDivInvMonoid
β€”division_def
sqrt_mul'
inv_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
sqrt_inv
sqrt_div_self πŸ“–mathematicalβ€”Real
DivInvMonoid.toDiv
instDivInvMonoid
sqrt
instInv
β€”sqrt_div_self'
one_div
sqrt_div_self' πŸ“–mathematicalβ€”Real
DivInvMonoid.toDiv
instDivInvMonoid
sqrt
instOne
β€”div_sqrt
one_div_div
sqrt_eq_cases πŸ“–mathematicalβ€”sqrt
Real
instMul
instLE
instZero
instLT
β€”le_or_gt
mul_self_sqrt
sqrt_nonneg
sqrt_eq_zero_of_nonpos
LT.lt.le
sqrt_mul_self
sqrt_eq_iff_eq_sq πŸ“–mathematicalReal
instLE
instZero
sqrt
Monoid.toNatPow
instMonoid
β€”sq
sqrt_eq_iff_mul_self_eq
sqrt_eq_iff_mul_self_eq πŸ“–mathematicalReal
instLE
instZero
sqrt
instMul
β€”mul_self_sqrt
sqrt_mul_self
sqrt_eq_iff_mul_self_eq_of_pos πŸ“–mathematicalReal
instLT
instZero
sqrt
instMul
β€”LT.lt.le
LT.lt.ne'
sqrt_eq_one πŸ“–mathematicalβ€”sqrt
Real
instOne
β€”sqrt_eq_iff_mul_self_eq_of_pos
zero_lt_one
instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
mul_one
sqrt_eq_zero πŸ“–mathematicalReal
instLE
instZero
sqrtβ€”sqrt_zero
le_rfl
sqrt_eq_zero' πŸ“–mathematicalβ€”sqrt
Real
instZero
instLE
β€”sqrt.eq_1
NNReal.coe_eq_zero
NNReal.sqrt_eq_zero
toNNReal_eq_zero
sqrt_eq_zero_of_nonpos πŸ“–mathematicalReal
instLE
instZero
sqrtβ€”sqrt.eq_1
toNNReal_eq_zero
NNReal.sqrt_zero
sqrt_inj πŸ“–mathematicalReal
instLE
instZero
sqrtβ€”β€”
sqrt_inv πŸ“–mathematicalβ€”sqrt
Real
instInv
β€”sqrt.eq_1
toNNReal_inv
NNReal.sqrt_inv
NNReal.coe_inv
sqrt_le_iff πŸ“–mathematicalβ€”Real
instLE
sqrt
instZero
Monoid.toNatPow
instMonoid
β€”LE.le.trans
sqrt_nonneg
sqrt_le_left
sqrt_le_left πŸ“–mathematicalReal
instLE
instZero
sqrt
Monoid.toNatPow
instMonoid
β€”sqrt.eq_1
le_toNNReal_iff_coe_le
NNReal.sqrt_le_iff_le_sq
sq
toNNReal_mul
toNNReal_le_toNNReal_iff
mul_self_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
instIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sqrt_le_one πŸ“–mathematicalβ€”Real
instLE
sqrt
instOne
β€”sqrt_one
sqrt_le_sqrt_iff
zero_le_one
instZeroLEOneClass
sqrt_le_sqrt πŸ“–mathematicalReal
instLE
sqrtβ€”sqrt.eq_1
NNReal.coe_le_coe
NNReal.sqrt_le_sqrt
toNNReal_le_toNNReal
sqrt_le_sqrt_iff πŸ“–mathematicalReal
instLE
instZero
sqrtβ€”sqrt.eq_1
NNReal.coe_le_coe
NNReal.sqrt_le_sqrt
toNNReal_le_toNNReal_iff
sqrt_le_sqrt_iff' πŸ“–mathematicalReal
instLT
instZero
instLE
sqrt
β€”le_total
LT.lt.not_ge
Eq.trans_lt
sqrt_eq_zero_of_nonpos
sqrt_pos
LE.le.trans_lt
sqrt_le_sqrt_iff
sqrt_lt πŸ“–mathematicalReal
instLE
instZero
instLT
sqrt
Monoid.toNatPow
instMonoid
β€”sqrt_lt_sqrt_iff
sqrt_sq
sqrt_lt' πŸ“–mathematicalReal
instLT
instZero
sqrt
Monoid.toNatPow
instMonoid
β€”sqrt_lt_sqrt_iff_of_pos
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
instZeroLEOneClass
sqrt_sq
LT.lt.le
sqrt_lt_sqrt πŸ“–mathematicalReal
instLE
instZero
instLT
sqrtβ€”sqrt_lt_sqrt_iff
sqrt_lt_sqrt_iff πŸ“–mathematicalReal
instLE
instZero
instLT
sqrt
β€”lt_iff_lt_of_le_iff_le
sqrt_le_sqrt_iff
sqrt_lt_sqrt_iff_of_pos πŸ“–mathematicalReal
instLT
instZero
sqrtβ€”sqrt.eq_1
NNReal.coe_lt_coe
NNReal.sqrt_lt_sqrt
toNNReal_lt_toNNReal_iff
sqrt_monotone πŸ“–mathematicalβ€”Monotone
Real
instPreorder
sqrt
β€”sqrt_le_sqrt
sqrt_mul πŸ“–mathematicalReal
instLE
instZero
sqrt
instMul
β€”sqrt.eq_1
toNNReal_mul
NNReal.sqrt_mul
sqrt_mul' πŸ“–mathematicalReal
instLE
instZero
sqrt
instMul
β€”mul_comm
sqrt_mul
sqrt_mul_self πŸ“–mathematicalReal
instLE
instZero
sqrt
instMul
β€”mul_self_inj_of_nonneg
IsStrictOrderedRing.noZeroDivisors
instIsStrictOrderedRing
AddGroup.existsAddOfLE
sqrt_nonneg
mul_self_sqrt
mul_self_nonneg
IsOrderedRing.toPosMulMono
instIsOrderedRing
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sqrt_mul_self_eq_abs πŸ“–mathematicalβ€”sqrt
Real
instMul
abs
lattice
instAddGroup
β€”abs_mul_abs_self
sqrt_mul_self
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
sqrt_ne_zero πŸ“–β€”Real
instLE
instZero
β€”β€”not_iff_not
sqrt_eq_zero
sqrt_ne_zero' πŸ“–mathematicalβ€”Real
instLT
instZero
β€”not_le
not_iff_not
sqrt_eq_zero'
sqrt_nonneg πŸ“–mathematicalβ€”Real
instLE
instZero
sqrt
β€”NNReal.coe_nonneg
sqrt_one πŸ“–mathematicalβ€”sqrt
Real
instOne
β€”sqrt.eq_1
toNNReal_one
NNReal.sqrt_one
sqrt_one_add_le πŸ“–mathematicalReal
instLE
instNeg
instOne
sqrt
instAdd
DivInvMonoid.toDiv
instDivInvMonoid
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
sqrt_le_iff
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_neg
instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
neg_neg_of_pos
instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
instIsOrderedRing
CancelDenoms.sub_subst
CancelDenoms.add_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
le_add_of_nonneg_right
IsOrderedAddMonoid.toAddLeftMono
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Meta.NormNum.isNNRat_pow
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Meta.NormNum.one_natPow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.pow_nat
Mathlib.Tactic.Ring.coeff_one
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.pow_bit0
Mathlib.Tactic.Ring.pow_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNNRat_add
sqrt_pos πŸ“–mathematicalβ€”Real
instLT
instZero
sqrt
β€”lt_iff_lt_of_le_iff_le
sqrt_eq_zero'
sqrt_pos_of_pos πŸ“–mathematicalReal
instLT
instZero
sqrtβ€”sqrt_pos
sqrt_prod πŸ“–mathematicalReal
instLE
instZero
sqrt
Finset.prod
instCommMonoid
β€”NNReal.sqrt_zero
NNReal.sqrt_one
NNReal.sqrt_mul
Finset.prod_congr
coe_sqrt
NNReal.coe_prod
sup_of_le_left
map_prod
MonoidWithZeroHomClass.toMonoidHomClass
MonoidWithZeroHom.monoidWithZeroHomClass
sqrt_sq πŸ“–mathematicalReal
instLE
instZero
sqrt
Monoid.toNatPow
instMonoid
β€”sq
sqrt_mul_self
sqrt_sq_eq_abs πŸ“–mathematicalβ€”sqrt
Real
Monoid.toNatPow
instMonoid
abs
lattice
instAddGroup
β€”sq
sqrt_mul_self_eq_abs
sqrt_two_lt_three_halves πŸ“–mathematicalβ€”Real
instLT
sqrt
instOfNatAtLeastTwo
instNatCast
Nat.instAtLeastTwoHAddOfNat
DivInvMonoid.toDiv
instDivInvMonoid
β€”Nat.instAtLeastTwoHAddOfNat
sq_lt_sqβ‚€
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
instIsOrderedRing
le_of_lt
sqrt_pos_of_pos
Mathlib.Meta.Positivity.pos_of_isNat
instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
sqrt_zero πŸ“–mathematicalβ€”sqrt
Real
instZero
β€”sqrt.eq_1
toNNReal_zero
NNReal.sqrt_zero
strictMonoOn_sqrt πŸ“–mathematicalβ€”StrictMonoOn
Real
instPreorder
sqrt
Set.Ici
instZero
β€”sqrt_lt_sqrt_iff
sum_mul_le_sqrt_mul_sqrt πŸ“–mathematicalβ€”Real
instLE
Finset.sum
instAddCommMonoid
instMul
sqrt
Monoid.toNatPow
instMonoid
β€”LE.le.trans_eq
le_sqrt_of_sq_le
Finset.sum_mul_sq_le_sq_mul_sq
instIsStrictOrderedRing
AddGroup.existsAddOfLE
sqrt_mul
Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
Nat.instAtLeastTwoHAddOfNat
even_two_mul
sum_sqrt_mul_sqrt_le πŸ“–mathematicalReal
instLE
instZero
Finset.sum
instAddCommMonoid
instMul
sqrt
β€”Finset.sum_congr
sq_sqrt
sum_mul_le_sqrt_mul_sqrt
tendsto_sqrt_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
sqrt
Filter.atTop
instPreorder
β€”Eq.le
map_sqrt_atTop

---

← Back to Index