Documentation Verification Report

Star

📁 Source: Mathlib/Data/Real/Star.lean

Statistics

MetricCount
DefinitionsinstStarRingReal
1
TheoremsinstTrivialStarReal
1
Total2

(root)

Definitions

NameCategoryTheorems
instStarRingReal 📖CompOp
202 mathmath: range_cfcₙ_nnreal, unitary.norm_expUnitary_smul_argSelfAdjoint_sub_one_le, Complex.coe_realPart, Matrix.IsHermitian.isClosedEmbedding_cfcAux, Unitary.norm_expUnitary_smul_argSelfAdjoint_sub_one_le, CFC.abs_eq_cfc_norm, CFC.sqrt_eq_one_iff', CFC.posPart_one, nnnorm_cfcₙ_nnreal_le_iff, realPart_idem, Matrix.IsHermitian.det_abs, CFC.posPart_natCast, CFC.tendsto_cfc_rpow_sub_one_log, Matrix.IsHermitian.cfc_eq, realPart_ofReal, CFC.sq_sqrt, QuadraticForm.posDef_toMatrix', instTrivialStarReal, Real.instStarOrderedRing, Unitization.real_cfcₙ_eq_cfc_inr, imaginaryPart_I_smul, selfAdjoint.expUnitaryPathToOne_apply, CFC.nnnorm_sqrt, NonUnitalStarAlgHom.realContinuousMapZeroOfNNReal_apply_comp_toReal, CFC.sqrt_rpow, Matrix.PosSemidef.sqrt_eq_zero_iff, cfc_complex_eq_real, CFC.negPart_algebraMap, cfcₙHom_nnreal_eq_restrict, instStarModuleNNRealReal, Continuous.cfc_nnreal', IsUnit.cfcSqrt, CFC.continuousOn_log, ContinuousOn.cfc_nnreal', IsGreatest.nnnorm_cfc_nnreal, CFC.continuousOn_sqrt, Matrix.PosSemidef.det_sqrt, StarAlgHom.continuous_realContinuousMapOfNNReal, Commute.cfc_real, selfAdjoint.imaginaryPart_coe, Matrix.IsHermitian.charpoly_cfc_eq, nnnorm_cfcₙ_nnreal_lt, CFC.sqrt_eq_rpow, cfc_real_eq_nnreal, Matrix.PosSemidef.posSemidef_sqrt, StarAlgHom.realContinuousMapOfNNReal_apply, realPart.norm_le, CFC.posPart_algebraMap_nnreal, Matrix.PosSemidef.sqrt_eq_one_iff, Matrix.PosSemidef.sqrt_sq, CFC.sqrt_eq_one_iff, realPart_add_I_smul_imaginaryPart, CStarAlgebra.norm_posPart_le, IsGreatest.nnnorm_cfcₙ_nnreal, Matrix.PosSemidef.eq_sqrt_iff_sq_eq, CFC.continuous_abs, continuousOn_cfc_nnreal, cfc_nnreal_eq_real, cfcₙ_real_eq_complex, CFC.abs_natCast, CStarAlgebra.isStrictlyPositive_iff_isStrictlyPositive_sqrt_and_eq_sqrt_mul_sqrt, StarAlgHom.realContinuousMapOfNNReal_apply_comp_toReal, Continuous.cfc_nnreal_of_mem_nhdsSet, IsSelfAdjoint.instNonUnitalContinuousFunctionalCalculus, Complex.selfAdjointEquiv_apply, Continuous.cfcₙ_nnreal, CStarAlgebra.linear_combination_nonneg, cfcHom_real_eq_restrict, CStarAlgebra.norm_smul_two_inv_smul_add_four_unitary, ContinuousAt.cfcₙ_nnreal, star_mul_self_add_self_mul_star, imaginaryPart.norm_le, ContinuousOn.cfc_nnreal_of_mem_nhdsSet, instCStarRingReal, CFC.abs_algebraMap, realPart_comp_subtype_selfAdjoint, Matrix.IsHermitian.cfcAux_apply, IsStrictlyPositive.nnrpow, CFC.monotoneOn_one_sub_one_add_inv_real, skewAdjoint.negISMul_apply_coe, ContinuousWithinAt.cfcₙ_nnreal, CFC.continuousOn_nnrpow, imaginaryPart_realPart, imaginaryPart_eq_neg_I_smul_skewAdjointPart, range_cfcₙ_nnreal_eq_image_cfcₙ_real, Filter.Tendsto.cfcₙ_nnreal, IsUnit.cfcNNRpow, realPart_I_smul, selfAdjoint.realPart_unitarySelfAddISMul, ContinuousOn.cfc_nnreal, nnnorm_cfcₙ_nnreal_lt_iff, nnnorm_cfc_nnreal_lt, imaginaryPart_apply_coe, NonUnitalStarAlgHom.realContinuousMapZeroOfNNReal_apply, IsStrictlyPositive.sqrt, Matrix.PosSemidef.isUnit_sqrt_iff, cfcₙ_real_eq_nnreal, imaginaryPart_comp_subtype_selfAdjoint, nnnorm_cfc_nnreal_le, IsSelfAdjoint.norm_eq_max_norm_posPart_negPart, ContinuousOn.cfcₙ_nnreal_of_mem_nhdsSet, Continuous.cfc_nnreal, nnnorm_cfc_nnreal_le_iff, CFC.sqrt_sq, CFC.rpow_sqrt_nnreal, realPart_surjective, ContinuousMapZero.toContinuousMapHom_toNNReal, Complex.instStarModuleReal, IsSelfAdjoint.instIsometricContinuousFunctionalCalculus, RCLike.instStarModuleReal, imaginaryPart_surjective, cfcHom_nnreal_eq_restrict, Matrix.PosSemidef.sq_sqrt, ContinuousOn.cfcₙ_nnreal', selfAdjoint.realPart_coe, range_cfc_nnreal, Matrix.PosDef.of_toQuadraticForm', CFC.abs_ofNat, CFC.negPart_one, Matrix.PosSemidef.inv_sqrt, cfcₙHom_real_eq_restrict, CFC.abs_algebraMap_nnreal, CFC.nnnorm_rpow, Continuous.cfcₙ_nnreal_of_mem_nhdsSet, CStarAlgebra.isStrictlyPositive_iff_isUnit_sqrt_and_eq_sqrt_mul_sqrt, cfc_comp_norm, StarModule.complexToReal, CFC.abs_intCast, apply_le_nnnorm_cfc_nnreal, range_cfc_nnreal_eq_image_cfc_real, Complex.coe_selfAdjointEquiv, NonUnitalStarAlgHom.realContinuousMapZeroOfNNReal_injective, imaginaryPart_ofReal, StarAlgHom.realContinuousMapOfNNReal_injective, CFC.exists_measure_nnrpow_eq_integral_cfcₙ_rpowIntegrand₀₁, CFC.spectrum_abs, Real.instContinuousMapUniqueHom, Complex.selfAdjointEquiv_symm_apply, Matrix.IsHermitian.cfcAux_id, CFC.sqrt_eq_cfc, realPart_imaginaryPart, Filter.Tendsto.cfc_nnreal, IsSelfAdjoint.instContinuousFunctionalCalculus, CFC.abs_eq_cfcₙ_norm, continuousOn_cfcₙ_nnreal, CFC.abs_sq, skewAdjointPart_eq_I_smul_imaginaryPart, RCLike.conj_to_real, CStarAlgebra.isStrictlyPositive_TFAE, CStarAlgebra.norm_negPart_le, cfcₙ_nnreal_eq_real, CFC.sqrt_algebraMap, CFC.posPart_algebraMap, CFC.sqrt_one, CFC.nnrpow_eq_cfcₙ_real, imaginaryPart_imaginaryPart, CFC.negPart_def, CFC.sqrt_rpow_nnreal, instContinuousStarReal, nnnorm_cfc_nnreal_lt_iff, imaginaryPart_smul, cfc_real_eq_complex, CFC.norm_rpow, realPart_apply_coe, MonotoneOn.nnnorm_cfc, ContinuousOn.cfcₙ_nnreal, CFC.posPart_def, CFC.nnrpow_eq_rpow, CFC.cfcₙ_rpowIntegrand₀₁_eq_cfcₙ_rpowIntegrand₀₁_one, continuousOn_cfc_nnreal_setProd, CFC.abs_one, Matrix.PosSemidef.sqrt_mul_self, IsSelfAdjoint.coe_realPart, realPart_smul, CFC.isUnit_nnrpow_iff, CFC.monotoneOn_cfcₙ_rpowIntegrand₀₁, ContinuousAt.cfc_nnreal, skewAdjoint.I_smul_neg_I, ContinuousWithinAt.cfc_nnreal, IsSelfAdjoint.instNonUnitalIsometricContinuousFunctionalCalculus, nnnorm_cfcₙ_nnreal_le, CFC.sqrt_eq_real_sqrt, apply_le_nnnorm_cfcₙ_nnreal, continuousOn_cfcₙ_nnreal_setProd, CFC.real_exp_eq_normedSpace_exp, CFC.norm_sqrt, CFC.continuousOn_rpow, IsSelfAdjoint.imaginaryPart, MonotoneOn.nnnorm_cfcₙ, CFC.nnnorm_nnrpow, Matrix.PosDef.posDef_sqrt, CFC.norm_nnrpow, Commute.cfcₙ_real, Unitary.path_apply, cfcₙ_complex_eq_real, NonUnitalStarAlgHom.continuous_realContinuousMapZeroOfNNReal, Matrix.IsHermitian.instContinuousFunctionalCalculus, Matrix.PosSemidef.sqrt_eq_iff_eq_sq, CFC.rpow_eq_cfc_real, Continuous.cfcₙ_nnreal', CFC.isUnit_sqrt_iff, CFC.rpow_sqrt

Theorems

NameKindAssumesProvesValidatesDepends On
instTrivialStarReal 📖mathematicalTrivialStar
Real
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Real.commRing
StarRing.toStarAddMonoid
instStarRingReal

---

← Back to Index