Documentation Verification Report

Cover

📁 Source: Mathlib/Data/Rel/Cover.lean

Statistics

MetricCount
DefinitionsIsCover
1
Theoremsanti, empty, mono, mono_entourage, nonempty, of_maximal_isSeparated, refl, rfl, union, isCover_empty_right, isCover_id, isCover_relId, isCover_univ
13
Total14

SetRel

Definitions

NameCategoryTheorems
IsCover 📖MathDef
10 mathmath: IsCover.of_maximal_isSeparated, isCover_univ, IsCover.refl, isCover_relId, UniformSpace.isCover_iff_subset_iUnion_ball, IsCover.rfl, IsCover.of_subset_iUnion_ball, isCover_id, isCover_empty_right, IsCover.empty

Theorems

NameKindAssumesProvesValidatesDepends On
isCover_empty_right 📖mathematicalIsCover
Set
Set.instEmptyCollection
isCover_id 📖mathematicalIsCover
id
Set
Set.instHasSubset
isCover_relId 📖mathematicalIsCover
id
Set
Set.instHasSubset
isCover_id
isCover_univ 📖mathematicalIsCover
Set.univ
Set.Nonempty

SetRel.IsCover

Theorems

NameKindAssumesProvesValidatesDepends On
anti 📖Set
Set.instHasSubset
SetRel.IsCover
empty 📖mathematicalSetRel.IsCover
Set
Set.instEmptyCollection
instIsEmptyFalse
mono 📖Set
Set.instHasSubset
SetRel.IsCover
mono_entourage 📖SetRel
Set.instHasSubset
SetRel.IsCover
nonempty 📖SetRel.IsCover
Set.Nonempty
of_maximal_isSeparated 📖mathematicalMaximal
Set
Set.instLE
Set.instHasSubset
SetRel.IsSeparated
SetRel.IsCoverSetRel.rfl
Mathlib.Tactic.Push.not_and_eq
SetRel.IsSeparated.insert
Set.subset_insert
Set.mem_insert
refl 📖mathematicalSetRel.IsCoverSetRel.rfl
rfl 📖mathematicalSetRel.IsCoverrefl
union 📖mathematicalSetRel.IsCoverSet
Set.instUnion

---

← Back to Index