| Name | Category | Theorems |
IsPure π | MathDef | 4 mathmath: isPure_univ, isPure_of_subsingleton, isPure_iff, pure_isPure
|
bind π | CompOp | 2 mathmath: bind_def, mem_bind
|
blur π | CompOp | 1 mathmath: blur_eq_blur'
|
blur' π | CompOp | 2 mathmath: mem_blur', blur_eq_blur'
|
get π | CompOp | 2 mathmath: get_mem, eq_pure
|
instInhabited π | CompOp | β |
instLE π | CompOp | 2 mathmath: IsPure.min, pure_le
|
instMembership π | CompOp | 11 mathmath: mem_map, mem_pure_self, mem_bind, mem_pure', get_mem, mem_blur', pure_le, mem_pure, ext, mem_univ, exists_mem
|
instMonad π | CompOp | 10 mathmath: bind_def, mem_pure_self, instLawfulMonad, pure_inj, pure_le, mem_pure, eq_pure, isPure_iff, map_def, pure_isPure
|
instOrderTopOfInhabited π | CompOp | β |
instSemilatticeSup π | CompOp | β |
liftOn π | CompOp | 1 mathmath: liftOn_ofMem
|
map π | CompOp | 2 mathmath: mem_map, map_def
|
mk π | CompOp | β |
ofTrunc π | CompOp | β |
partialOrder π | CompOp | β |
pure π | CompOp | 1 mathmath: mem_pure'
|
s π | CompOp | 3 mathmath: ext_s, nonempty, eq_mk_of_mem
|
toTrunc π | CompOp | β |
univ π | CompOp | 3 mathmath: isPure_univ, mem_univ, univ_unique
|
val π | CompOp | β |