Documentation Verification Report

Basic

📁 Source: Mathlib/Data/Set/Basic.lean

Statistics

MetricCount
DefinitionssetSubtypeComm, some, decidableCompl, decidableEmptyset, decidableInsert, decidableInter, decidableSdiff, decidableSetOf, decidableUnion, decidableUniv, instBoundedOrder, instDistribLattice, instHasSSubset, instInhabited, instTransSSubset, instTransSSubsetSubset, instTransSubset, instTransSubsetSSubset, uniqueEmpty, instCoeTCElem
20
TheoremssetSubtypeComm_apply, setSubtypeComm_symm_apply, nonempty_apply_iff, lt, le, subset, ssubset, elim, coe_sort, empty_ssubset, eq_univ, inl, inr, left, mono, ne_empty, not_subset_empty, of_diff, of_subtype, right, some_mem, to_subtype, to_type, canLift, canLift', antisymm, antisymm_iff, refl, rfl, trans, bot_eq_empty, coe_eq_subtype, coe_setOf, empty_def, empty_inter, empty_ne_univ, empty_ssubset, empty_subset, empty_union, eq_empty_iff_forall_notMem, eq_empty_of_forall_notMem, eq_empty_of_isEmpty, eq_empty_of_subset_empty, eq_empty_or_nonempty, eq_of_forall_subset_iff, eq_of_subset_of_subset, eq_or_ssubset_of_subset, eq_univ_iff_forall, eq_univ_of_forall, eq_univ_of_subset, eq_univ_of_univ_subset, exists_mem_of_nonempty, exists_of_ssubset, forall_mem_empty, inf_eq_inter, instAntisymmSubset, instAsymmSSubset, instIrreflSSubset, instIsEmptyElemEmptyCollection, instIsNonstrictStrictOrderSubsetSSubset, instIsTransSSubset, instIsTransSubset, instNonemptyTop, instReflSubset, inter_assoc, inter_comm, inter_congr_left, inter_congr_right, inter_def, inter_empty, inter_eq_inter_iff_left, inter_eq_inter_iff_right, inter_eq_left, inter_eq_right, inter_eq_self_of_subset_left, inter_eq_self_of_subset_right, inter_inter_distrib_left, inter_inter_distrib_right, inter_inter_inter_comm, inter_isAssoc, inter_isComm, inter_left_comm, inter_nonempty, inter_nonempty_iff_exists_left, inter_nonempty_iff_exists_right, inter_right_comm, inter_self, inter_setOf_eq_sep, inter_ssubset_left_iff, inter_ssubset_right_iff, inter_subset_inter, inter_subset_inter_left, inter_subset_inter_right, inter_subset_left, inter_subset_right, inter_union_distrib_left, inter_union_distrib_right, inter_univ, isEmpty_coe_sort, le_eq_subset, le_iff_subset, left_eq_inter, lt_eq_ssubset, lt_iff_ssubset, mem_dite_empty_left, mem_dite_empty_right, mem_dite_univ_left, mem_dite_univ_right, mem_empty_iff_false, mem_inter, mem_inter_iff, mem_ite_empty_left, mem_ite_empty_right, mem_ite_univ_left, mem_ite_univ_right, mem_of_eq_of_mem, mem_of_mem_inter_left, mem_of_mem_inter_right, mem_of_mem_of_subset, mem_of_subset_of_mem, mem_or_mem_of_mem_union, mem_powerset, mem_powerset_iff, mem_sep, mem_sep_iff, mem_union, mem_union_left, mem_union_right, monotone_powerset, ne_univ_iff_exists_notMem, nonempty_coe_sort, nonempty_def, nonempty_iff_empty_ne, nonempty_iff_ne_empty, nonempty_iff_ne_empty', nonempty_iff_univ_nonempty, nonempty_of_mem, nonempty_of_not_subset, nonempty_of_ssubset, nonempty_of_ssubset', nontrivial_of_nonempty, notMem_empty, notMem_subset, not_nonempty_empty, not_nonempty_iff_eq_empty, not_nonempty_iff_eq_empty', not_notMem, not_subset, not_subset_iff_exists_mem_notMem, not_top_subset, powerset_empty, powerset_inter, powerset_mono, powerset_nonempty, powerset_univ, right_eq_inter, sep_and, sep_empty, sep_eq_empty_iff_mem_false, sep_eq_inter_sep, sep_eq_of_subset, sep_eq_self_iff_mem_true, sep_ext_iff, sep_false, sep_inter, sep_mem_eq, sep_of_subset, sep_or, sep_setOf, sep_subset, sep_subset_setOf, sep_true, sep_union, sep_univ, setOf_and, setOf_bijective, setOf_bot, setOf_false, setOf_inj, setOf_injective, setOf_inter_eq_sep, setOf_or, setOf_subset, setOf_subset_setOf, setOf_subset_setOf_of_imp, setOf_top, setOf_true, ssubset_def, ssubset_iff_exists, ssubset_iff_of_subset, ssubset_iff_subset_ne, ssubset_of_ssubset_of_subset, ssubset_of_subset_of_ssubset, ssubset_union_left_iff, ssubset_union_right_iff, ssubset_univ_iff, subset_def, subset_empty_iff, subset_eq_empty, subset_inter, subset_inter_iff, subset_of_mem_powerset, subset_setOf, subset_union_left, subset_union_of_subset_left, subset_union_of_subset_right, subset_union_right, subset_univ, sup_eq_union, top_eq_univ, union_assoc, union_comm, union_congr_left, union_congr_right, union_def, union_empty, union_empty_iff, union_eq_left, union_eq_right, union_eq_self_of_subset_left, union_eq_self_of_subset_right, union_eq_union_iff_left, union_eq_union_iff_right, union_inter_cancel_left, union_inter_cancel_right, union_inter_distrib_left, union_inter_distrib_right, union_isAssoc, union_isComm, union_left_comm, union_nonempty, union_right_comm, union_self, union_subset, union_subset_iff, union_subset_union, union_subset_union_left, union_subset_union_right, union_union_distrib_left, union_union_distrib_right, union_union_union_comm, union_univ, nonempty, univ_eq_empty_iff, univ_inter, univ_nonempty, univ_subset_iff, univ_union, univ_unique, exists, exists', ext, ext_iff, forall, forall', eq_univ_of_nonempty, mem_iff_nonempty, set_cases, mem, set_coe_cast
260
Total280

Equiv

Definitions

NameCategoryTheorems
setSubtypeComm 📖CompOp
2 mathmath: setSubtypeComm_apply, setSubtypeComm_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
setSubtypeComm_apply 📖mathematicalDFunLike.coe
Equiv
Set
EquivLike.toFunLike
instEquivLike
setSubtypeComm
setOf
Set.instMembership
setSubtypeComm_symm_apply 📖mathematicalDFunLike.coe
Equiv
Set
EquivLike.toFunLike
instEquivLike
symm
setSubtypeComm
setOf
Set.instMembership

Function.Injective

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_apply_iff 📖mathematicalSet
Set.instEmptyCollection
Set.NonemptySet.nonempty_iff_ne_empty

HasSSubset.SSubset

Theorems

NameKindAssumesProvesValidatesDepends On
lt 📖mathematicalSet
Set.instHasSSubset
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
Set.instDistribLattice
Set.lt_iff_ssubset

HasSubset.Subset

Theorems

NameKindAssumesProvesValidatesDepends On
le 📖mathematicalSet
Set.instHasSubset
Set.instLESet.le_iff_subset

LE.le

Theorems

NameKindAssumesProvesValidatesDepends On
subset 📖mathematicalSet
Set.instLE
Set.instHasSubsetSet.le_iff_subset

LT.lt

Theorems

NameKindAssumesProvesValidatesDepends On
ssubset 📖mathematicalSet
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
Set.instDistribLattice
Set.instHasSSubsetSet.lt_iff_ssubset

Set

Definitions

NameCategoryTheorems
decidableCompl 📖CompOp
7 mathmath: SimpleGraph.edgeFinset_top, SimpleGraph.neighborFinset_subset_between_union, SimpleGraph.neighborFinset_subset_between_union_compl, SimpleGraph.degree_le_between_add, Sym2.card_diagSet_compl, SimpleGraph.degree_le_between_add_compl, SimpleGraph.card_edgeFinset_induce_compl_singleton
decidableEmptyset 📖CompOp
1 mathmath: schnirelmannDensity_empty
decidableInsert 📖CompOp
decidableInter 📖CompOp
decidableSdiff 📖CompOp
decidableSetOf 📖CompOp
16 mathmath: FormalMultilinearSeries.comp_rightInv_aux1, quadraticChar_card_sqrts, schnirelmannDensity_setOf_prime, schnirelmannDensity_setOf_even, PEquiv.symm_trans_self, Finset.sum_toFinset_eq_subtype, FormalMultilinearSeries.radius_right_inv_pos_of_radius_pos_aux1, legendreSym.card_sqrts, schnirelmannDensity_setOf_modeq_one, schnirelmannDensity_setOf_Odd, PEquiv.self_trans_symm, FormalMultilinearSeries.rightInv_coeff, Finset.prod_toFinset_eq_subtype, FormalMultilinearSeries.comp_rightInv_aux2, schnirelmannDensity_setOf_mod_eq_one, SimpleGraph.Walk.IsEulerian.card_odd_degree
decidableUnion 📖CompOp
decidableUniv 📖CompOp
2 mathmath: schnirelmannDensity_univ, PEquiv.ofSet_univ
instBoundedOrder 📖CompOp
38 mathmath: TopCat.binaryCofan_isColimit_iff, CategoryTheory.Limits.Types.binaryCofan_isColimit_iff, disjoint_or_nonempty_inter, disjoint_union_right, isCompl_range_some_none, disjoint_singleton_right, disjoint_left, MeasureTheory.SignedMeasure.exists_isCompl_positive_negative, disjoint_singleton_left, disjoint_right, Concept.isCompl_extent_intent, disjoint_singleton, instNonemptyTop, Order.Ideal.PrimePair.isCompl_I_F, not_disjoint_iff_nonempty_inter, Int.isCompl_even_odd, AlgebraicGeometry.isCompl_range_inl_inr, disjoint_insert_left, addCentralizer_empty, bot_eq_empty, top_eq_univ, not_disjoint_iff, disjoint_iff_inter_eq_empty, disjoint_insert_right, disjoint_univ, isCompl_range_inl_range_inr, disjoint_iff_forall_ne, univ_disjoint, disjoint_empty, centralizer_empty, Nat.isCompl_even_odd, not_top_subset, disjoint_range_iff, empty_disjoint, disjoint_union_left, OnePoint.isCompl_range_coe_infty, disjoint_iff, Nonempty.not_disjoint
instDistribLattice 📖CompOp
32 mathmath: disjoint_or_nonempty_inter, disjoint_union_right, disjoint_singleton_right, disjoint_left, disjoint_singleton_left, disjoint_right, antitone_setOf, disjoint_singleton, HasSSubset.SSubset.lt, sup_eq_union, not_disjoint_iff_nonempty_inter, disjoint_insert_left, lt_eq_ssubset, not_disjoint_iff, disjoint_iff_inter_eq_empty, antitone_bforall, disjoint_insert_right, disjoint_univ, SetLike.coe_strictMono, monotone_setOf, disjoint_iff_forall_ne, univ_disjoint, disjoint_empty, inf_eq_inter, lt_iff_ssubset, disjoint_range_iff, empty_disjoint, disjoint_union_left, monotone_powerset, SetLike.coe_mono, disjoint_iff, Nonempty.not_disjoint
instHasSSubset 📖CompOp
86 mathmath: not_maximal_subset_iff, Submodule.iUnion_ssubset_of_forall_ne_top_of_card_lt, ssubset_iff_sdiff_singleton, ssubset_iff_subset_ne, Matroid.IsStrictMinor.ssubset, Ioi_ssubset_Ioi, PrimeSpectrum.vanishingIdeal_strict_anti_mono_iff, empty_ssubset_singleton, Finite.ssubset_toFinset, toFinset_ssubset_toFinset, inter_ssubset_left_iff, ssubset_def, SetSemiring.up_lt_up, UpperSet.coe_ssubset_coe, ssubset_insert, Matroid.not_spanning_iff_closure_ssubset, Ici_ssubset_Ici, singleton_ssubset_univ, Sublattice.mk_lt_mk, Iio_ssubset_Iic_self, SimpleGraph.edgeSet_ssubset_edgeSet, range_inter_ssubset_iff_preimage_ssubset, diff_ssubset_left_iff, AffineSubspace.lt_def, Minimal.not_ssubset, Filter.sets_ssubset_sets, LowerSet.coe_ssubset_coe, ssubset_iff_exists, Matroid.IsStrictRestriction.ssubset, NonemptyInterval.coe_ssubset_coe, diff_singleton_ssubset, instIsNonstrictStrictOrderSubsetSSubset, not_minimal_subset_iff, lt_eq_ssubset, Finite.toFinset_ssubset_toFinset, Matroid.Indep.closure_diff_singleton_ssubset, Matroid.indep_iff_forall_closure_ssubset_of_ssubset, Finset.coe_ssubset, AddAction.IsBlock.not_vadd_set_ssubset_vadd_set, Matroid.Indep.closure_diff_ssubset, Finite.toFinset_ssubset, Concept.intent_ssubset_intent_iff, Iic_ssubset_Iic, SetLike.coe_ssubset_coe, LT.lt.ssubset, Affine.Simplex.interior_ssubset_closedInterior, SimpleGraph.edgeSet_strict_mono, instAsymmSSubset, toFinset_ssubset, Iio_ssubset_Iio_iff, HasSubset.Subset.diff_ssubset_of_nonempty, Matroid.IsCircuit.not_ssubset, ssubset_toFinset, Icc_ssubset_Icc_left, instIrreflSSubset, SetSemiring.down_ssubset_down, Interval.coe_sSubset_coe, HasSubset.Subset.ssubset_of_mem_notMem, Maximal.not_ssuperset, ssubset_union_right_iff, prod_self_ssubset_prod_self, MulAction.IsBlock.not_smul_set_ssubset_smul_set, Icc_ssubset_Icc_right, TwoSidedIdeal.lt_iff, toFinset_ssubset_univ, ssubset_univ_iff, empty_ssubset, lt_iff_ssubset, InjOn.image_ssubset_image_iff, Iio_ssubset_Iio, ssubset_union_left_iff, ssubset_iff_of_subset, inter_ssubset_right_iff, ssubset_singleton_iff, Concept.extent_ssubset_extent_iff, instIsTransSSubset, Matroid.IsBase.ssubset_ground, Order.Ideal.coe_ssubset_coe, Matroid.isStrictMinor_iff_isMinor_ssubset, eq_or_ssubset_of_subset, Ioi_ssubset_Ici_self, Nonempty.empty_ssubset, Matroid.IsStrictRestriction.exists_eq_restrict, ssubset_iff_insert, Ioi_ssubset_Ioi_iff, Matroid.Indep.ssubset_ground
instInhabited 📖CompOp
instTransSSubset 📖CompOp
instTransSSubsetSubset 📖CompOp
instTransSubset 📖CompOp
instTransSubsetSSubset 📖CompOp
uniqueEmpty 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
bot_eq_empty 📖mathematicalBot.bot
Set
OrderBot.toBot
instLE
BoundedOrder.toOrderBot
instBoundedOrder
instEmptyCollection
coe_eq_subtype 📖mathematicalElem
Set
instMembership
coe_setOf 📖mathematicalElem
setOf
empty_def 📖mathematicalSet
instEmptyCollection
setOf
empty_inter 📖mathematicalSet
instInter
instEmptyCollection
ext
empty_ne_univ 📖not_isEmpty_of_nonempty
univ_eq_empty_iff
empty_ssubset 📖mathematicalSet
instHasSSubset
instEmptyCollection
Nonempty
bot_lt_iff_ne_bot
nonempty_iff_ne_empty
empty_subset 📖mathematicalSet
instHasSubset
instEmptyCollection
empty_union 📖mathematicalSet
instUnion
instEmptyCollection
ext
eq_empty_iff_forall_notMem 📖mathematicalSet
instEmptyCollection
instMembership
subset_empty_iff
eq_empty_of_forall_notMem 📖mathematicalSet
instMembership
instEmptyCollectionsubset_empty_iff
eq_empty_of_isEmpty 📖mathematicalSet
instEmptyCollection
eq_empty_of_subset_empty 📖Set
instHasSubset
instEmptyCollection
subset_empty_iff
eq_empty_or_nonempty 📖mathematicalSet
instEmptyCollection
Nonempty
nonempty_iff_ne_empty
eq_of_forall_subset_iff 📖Set
instHasSubset
eq_of_forall_ge_iff
eq_of_subset_of_subset 📖Set
instHasSubset
Subset.antisymm
eq_or_ssubset_of_subset 📖mathematicalSet
instHasSubset
instHasSSubseteq_or_lt_of_le
eq_univ_iff_forall 📖mathematicaluniv
Set
instMembership
univ_subset_iff
eq_univ_of_forall 📖mathematicalSet
instMembership
univeq_univ_iff_forall
eq_univ_of_subset 📖Set
instHasSubset
univ
eq_univ_of_univ_subset
eq_univ_of_univ_subset 📖Set
instHasSubset
univ
univ_subset_iff
exists_mem_of_nonempty 📖mathematicalSet
instMembership
univ
exists_of_ssubset 📖mathematicalSet
instHasSSubset
instMembershipnot_subset
forall_mem_empty 📖
inf_eq_inter 📖mathematicalSet
SemilatticeInf.toMin
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLattice
instInter
instAntisymmSubset 📖mathematicalSet
instHasSubset
instAntisymmLe
instAsymmSSubset 📖mathematicalSet
instHasSSubset
instAsymmLt
instIrreflSSubset 📖mathematicalSet
instHasSSubset
instIrreflLt
instIsEmptyElemEmptyCollection 📖mathematicalIsEmpty
Elem
Set
instEmptyCollection
instIsNonstrictStrictOrderSubsetSSubset 📖mathematicalIsNonstrictStrictOrder
Set
instHasSubset
instHasSSubset
instIsTransSSubset 📖mathematicalIsTrans
Set
instHasSSubset
instIsTransLt
instIsTransSubset 📖mathematicalIsTrans
Set
instHasSubset
instIsTransLe
instNonemptyTop 📖mathematicalElem
Top.top
Set
OrderTop.toTop
instLE
BoundedOrder.toOrderTop
instBoundedOrder
univ.nonempty
instReflSubset 📖mathematicalSet
instHasSubset
instReflLe
inter_assoc 📖mathematicalSet
instInter
ext
inter_comm 📖mathematicalSet
instInter
ext
inter_congr_left 📖Set
instHasSubset
instInter
inf_congr_left
inter_congr_right 📖Set
instHasSubset
instInter
inf_congr_right
inter_def 📖mathematicalSet
instInter
setOf
instMembership
inter_empty 📖mathematicalSet
instInter
instEmptyCollection
ext
inter_eq_inter_iff_left 📖mathematicalSet
instInter
instHasSubset
inf_eq_inf_iff_left
inter_eq_inter_iff_right 📖mathematicalSet
instInter
instHasSubset
inf_eq_inf_iff_right
inter_eq_left 📖mathematicalSet
instInter
instHasSubset
inf_eq_left
inter_eq_right 📖mathematicalSet
instInter
instHasSubset
inf_eq_right
inter_eq_self_of_subset_left 📖mathematicalSet
instHasSubset
instInterinter_eq_left
inter_eq_self_of_subset_right 📖mathematicalSet
instHasSubset
instInterinter_eq_right
inter_inter_distrib_left 📖mathematicalSet
instInter
inf_inf_distrib_left
inter_inter_distrib_right 📖mathematicalSet
instInter
inf_inf_distrib_right
inter_inter_inter_comm 📖mathematicalSet
instInter
inf_inf_inf_comm
inter_isAssoc 📖mathematicalSet
instInter
inter_assoc
inter_isComm 📖mathematicalSet
instInter
inter_comm
inter_left_comm 📖mathematicalSet
instInter
ext
inter_nonempty 📖mathematicalNonempty
Set
instInter
instMembership
inter_nonempty_iff_exists_left 📖mathematicalNonempty
Set
instInter
instMembership
inter_nonempty_iff_exists_right 📖mathematicalNonempty
Set
instInter
instMembership
inter_right_comm 📖mathematicalSet
instInter
ext
inter_self 📖mathematicalSet
instInter
ext
inter_setOf_eq_sep 📖mathematicalSet
instInter
setOf
instMembership
inter_ssubset_left_iff 📖mathematicalSet
instHasSSubset
instInter
instHasSubset
inf_lt_left
inter_ssubset_right_iff 📖mathematicalSet
instHasSSubset
instInter
instHasSubset
inf_lt_right
inter_subset_inter 📖mathematicalSet
instHasSubset
instInter
inter_subset_inter_left 📖mathematicalSet
instHasSubset
instInterinter_subset_inter
Subset.rfl
inter_subset_inter_right 📖mathematicalSet
instHasSubset
instInterinter_subset_inter
Subset.rfl
inter_subset_left 📖mathematicalSet
instHasSubset
instInter
inter_subset_right 📖mathematicalSet
instHasSubset
instInter
inter_union_distrib_left 📖mathematicalSet
instInter
instUnion
inf_sup_left
inter_union_distrib_right 📖mathematicalSet
instUnion
instInter
sup_inf_right
inter_univ 📖mathematicalSet
instInter
univ
inf_top_eq
isEmpty_coe_sort 📖mathematicalIsEmpty
Elem
Set
instEmptyCollection
not_iff_not
nonempty_iff_ne_empty
le_eq_subset 📖mathematicalSet
instLE
instHasSubset
le_iff_subset 📖mathematicalSet
instLE
instHasSubset
left_eq_inter 📖mathematicalSet
instInter
instHasSubset
left_eq_inf
lt_eq_ssubset 📖mathematicalSet
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLattice
instHasSSubset
lt_iff_ssubset 📖mathematicalSet
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLattice
instHasSSubset
mem_dite_empty_left 📖mathematicalSet
instMembership
instEmptyCollection
mem_dite_empty_right 📖mathematicalSet
instMembership
instEmptyCollection
mem_dite_univ_left 📖mathematicalSet
instMembership
univ
instIsEmptyFalse
mem_dite_univ_right 📖mathematicalSet
instMembership
univ
mem_empty_iff_false 📖mathematicalSet
instMembership
instEmptyCollection
mem_inter 📖mathematicalSet
instMembership
instInter
mem_inter_iff 📖mathematicalSet
instMembership
instInter
mem_ite_empty_left 📖mathematicalSet
instMembership
instEmptyCollection
mem_dite_empty_left
mem_ite_empty_right 📖mathematicalSet
instMembership
instEmptyCollection
mem_dite_empty_right
mem_ite_univ_left 📖mathematicalSet
instMembership
univ
mem_dite_univ_left
mem_ite_univ_right 📖mathematicalSet
instMembership
univ
mem_dite_univ_right
mem_of_eq_of_mem 📖Set
instMembership
mem_of_mem_inter_left 📖Set
instMembership
instInter
mem_of_mem_inter_right 📖Set
instMembership
instInter
mem_of_mem_of_subset 📖Set
instMembership
instHasSubset
mem_of_subset_of_mem 📖Set
instHasSubset
instMembership
mem_or_mem_of_mem_union 📖Set
instMembership
instUnion
mem_powerset 📖mathematicalSet
instHasSubset
instMembership
powerset
mem_powerset_iff 📖mathematicalSet
instMembership
powerset
instHasSubset
mem_sep 📖mathematicalSet
instMembership
setOf
mem_sep_iff 📖mathematicalSet
instMembership
setOf
mem_union 📖mathematicalSet
instMembership
instUnion
mem_union_left 📖mathematicalSet
instMembership
instUnion
mem_union_right 📖mathematicalSet
instMembership
instUnion
monotone_powerset 📖mathematicalMonotone
Set
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLattice
powerset
powerset_mono
ne_univ_iff_exists_notMem 📖mathematicalSet
instMembership
eq_univ_iff_forall
nonempty_coe_sort 📖mathematicalElem
Nonempty
nonempty_subtype
nonempty_def 📖mathematicalNonempty
Set
instMembership
nonempty_iff_empty_ne 📖mathematicalNonemptynonempty_iff_ne_empty
nonempty_iff_ne_empty 📖mathematicalNonemptyIff.not_right
not_nonempty_iff_eq_empty
nonempty_iff_ne_empty' 📖mathematicalElemIff.not_right
not_nonempty_iff_eq_empty'
nonempty_iff_univ_nonempty 📖mathematicalNonempty
univ
nonempty_of_mem 📖mathematicalSet
instMembership
Nonempty
nonempty_of_not_subset 📖mathematicalSet
instHasSubset
Nonempty
instSDiff
not_subset
nonempty_of_ssubset 📖mathematicalSet
instHasSSubset
Nonempty
instSDiff
nonempty_of_not_subset
nonempty_of_ssubset' 📖mathematicalSet
instHasSSubset
NonemptyNonempty.of_diff
nonempty_of_ssubset
nontrivial_of_nonempty 📖mathematicalNontrivial
Set
empty_ne_univ
notMem_empty 📖mathematicalSet
instMembership
instEmptyCollection
notMem_subset 📖Set
instHasSubset
instMembership
mem_of_subset_of_mem
not_nonempty_empty 📖mathematicalNonempty
Set
instEmptyCollection
not_nonempty_iff_eq_empty 📖mathematicalNonempty
Set
instEmptyCollection
not_nonempty_iff_eq_empty' 📖mathematicalElem
Set
instEmptyCollection
nonempty_subtype
eq_empty_iff_forall_notMem
not_notMem 📖mathematicalSet
instMembership
not_subset 📖mathematicalSet
instHasSubset
instMembership
not_subset_iff_exists_mem_notMem 📖mathematicalSet
instHasSubset
instMembership
not_top_subset 📖mathematicalSet
instHasSubset
Top.top
OrderTop.toTop
instLE
BoundedOrder.toOrderTop
instBoundedOrder
instMembership
powerset_empty 📖mathematicalpowerset
Set
instEmptyCollection
instSingletonSet
ext
subset_empty_iff
powerset_inter 📖mathematicalpowerset
Set
instInter
ext
subset_inter_iff
powerset_mono 📖mathematicalSet
instHasSubset
powerset
powerset_nonempty 📖mathematicalNonempty
Set
powerset
empty_subset
powerset_univ 📖mathematicalpowerset
univ
Set
eq_univ_of_forall
subset_univ
right_eq_inter 📖mathematicalSet
instInter
instHasSubset
right_eq_inf
sep_and 📖mathematicalsetOf
Set
instMembership
instInter
inter_inter_distrib_left
sep_empty 📖mathematicalsetOf
Set
instMembership
instEmptyCollection
empty_inter
sep_eq_empty_iff_mem_false 📖mathematicalsetOf
Set
instMembership
instEmptyCollection
sep_eq_inter_sep 📖mathematicalSet
instHasSubset
setOf
instMembership
instInter
inter_setOf_eq_sep
inter_assoc
left_eq_inter
sep_eq_of_subset 📖mathematicalSet
instHasSubset
setOf
instMembership
inter_eq_self_of_subset_right
sep_eq_self_iff_mem_true 📖mathematicalsetOf
Set
instMembership
sep_ext_iff 📖mathematicalsetOf
Set
instMembership
sep_false 📖mathematicalsetOf
Set
instMembership
instEmptyCollection
inter_empty
sep_inter 📖mathematicalsetOf
Set
instMembership
instInter
inter_inter_distrib_right
sep_mem_eq 📖mathematicalsetOf
Set
instMembership
instInter
sep_of_subset 📖mathematicalSet
instHasSubset
setOf
instMembership
instInter
sep_eq_inter_sep
sep_or 📖mathematicalsetOf
Set
instMembership
instUnion
inter_union_distrib_left
sep_setOf 📖mathematicalsetOf
Set
instMembership
sep_subset 📖mathematicalSet
instHasSubset
setOf
instMembership
sep_subset_setOf 📖mathematicalSet
instHasSubset
setOf
instMembership
sep_true 📖mathematicalsetOf
Set
instMembership
inter_univ
sep_union 📖mathematicalsetOf
Set
instMembership
instUnion
union_inter_distrib_right
sep_univ 📖mathematicalsetOf
Set
instMembership
univ
univ_inter
setOf_and 📖mathematicalsetOf
Set
instInter
setOf_bijective 📖mathematicalFunction.Bijective
Set
setOf
Function.bijective_id
setOf_bot 📖mathematicalsetOf
Bot.bot
OrderBot.toBot
Prop.le
BoundedOrder.toOrderBot
Prop.instBoundedOrder
Set
instEmptyCollection
setOf_false 📖mathematicalsetOf
Set
instEmptyCollection
setOf_inj 📖mathematicalsetOf
setOf_injective 📖mathematicalSet
setOf
setOf_inter_eq_sep 📖mathematicalSet
instInter
setOf
instMembership
inter_comm
setOf_or 📖mathematicalsetOf
Set
instUnion
setOf_subset 📖mathematicalSet
instHasSubset
setOf
instMembership
setOf_subset_setOf 📖mathematicalSet
instHasSubset
setOf
setOf_subset_setOf_of_imp 📖mathematicalSet
instHasSubset
setOf
setOf_subset_setOf
setOf_top 📖mathematicalsetOf
Top.top
OrderTop.toTop
Prop.le
BoundedOrder.toOrderTop
Prop.instBoundedOrder
univ
setOf_true 📖mathematicalsetOf
univ
ssubset_def 📖mathematicalSet
instHasSSubset
instHasSubset
ssubset_iff_exists 📖mathematicalSet
instHasSSubset
instHasSubset
instMembership
LT.lt.le
exists_of_ssubset
ssubset_iff_of_subset
ssubset_iff_of_subset 📖mathematicalSet
instHasSubset
instHasSSubset
instMembership
exists_of_ssubset
ssubset_iff_subset_ne 📖mathematicalSet
instHasSSubset
instHasSubset
lt_iff_le_and_ne
ssubset_of_ssubset_of_subset 📖Set
instHasSSubset
instHasSubset
Subset.trans
ssubset_of_subset_of_ssubset 📖Set
instHasSubset
instHasSSubset
Subset.trans
ssubset_union_left_iff 📖mathematicalSet
instHasSSubset
instUnion
instHasSubset
left_lt_sup
ssubset_union_right_iff 📖mathematicalSet
instHasSSubset
instUnion
instHasSubset
right_lt_sup
ssubset_univ_iff 📖mathematicalSet
instHasSSubset
univ
lt_top_iff_ne_top
subset_def 📖mathematicalSet
instHasSubset
subset_empty_iff 📖mathematicalSet
instHasSubset
instEmptyCollection
Subset.antisymm_iff
empty_subset
subset_eq_empty 📖Set
instHasSubset
instEmptyCollection
subset_empty_iff
subset_inter 📖mathematicalSet
instHasSubset
instInter
subset_inter_iff 📖mathematicalSet
instHasSubset
instInter
subset_of_mem_powerset 📖mathematicalSet
instMembership
powerset
instHasSubset
subset_setOf 📖mathematicalSet
instHasSubset
setOf
subset_union_left 📖mathematicalSet
instHasSubset
instUnion
subset_union_of_subset_left 📖mathematicalSet
instHasSubset
instUnionHasSubset.Subset.trans
instIsTransSubset
subset_union_left
subset_union_of_subset_right 📖mathematicalSet
instHasSubset
instUnionHasSubset.Subset.trans
instIsTransSubset
subset_union_right
subset_union_right 📖mathematicalSet
instHasSubset
instUnion
subset_univ 📖mathematicalSet
instHasSubset
univ
sup_eq_union 📖mathematicalSet
SemilatticeSup.toMax
Lattice.toSemilatticeSup
DistribLattice.toLattice
instDistribLattice
instUnion
top_eq_univ 📖mathematicalTop.top
Set
OrderTop.toTop
instLE
BoundedOrder.toOrderTop
instBoundedOrder
univ
union_assoc 📖mathematicalSet
instUnion
ext
union_comm 📖mathematicalSet
instUnion
ext
union_congr_left 📖Set
instHasSubset
instUnion
sup_congr_left
union_congr_right 📖Set
instHasSubset
instUnion
sup_congr_right
union_def 📖mathematicalSet
instUnion
setOf
instMembership
union_empty 📖mathematicalSet
instUnion
instEmptyCollection
ext
union_empty_iff 📖mathematicalSet
instUnion
instEmptyCollection
union_subset_iff
union_eq_left 📖mathematicalSet
instUnion
instHasSubset
sup_eq_left
union_eq_right 📖mathematicalSet
instUnion
instHasSubset
sup_eq_right
union_eq_self_of_subset_left 📖mathematicalSet
instHasSubset
instUnionunion_eq_right
union_eq_self_of_subset_right 📖mathematicalSet
instHasSubset
instUnionunion_eq_left
union_eq_union_iff_left 📖mathematicalSet
instUnion
instHasSubset
sup_eq_sup_iff_left
union_eq_union_iff_right 📖mathematicalSet
instUnion
instHasSubset
sup_eq_sup_iff_right
union_inter_cancel_left 📖mathematicalSet
instInter
instUnion
inter_eq_self_of_subset_right
subset_union_left
union_inter_cancel_right 📖mathematicalSet
instInter
instUnion
inter_eq_self_of_subset_right
subset_union_right
union_inter_distrib_left 📖mathematicalSet
instUnion
instInter
sup_inf_left
union_inter_distrib_right 📖mathematicalSet
instInter
instUnion
inf_sup_right
union_isAssoc 📖mathematicalSet
instUnion
union_assoc
union_isComm 📖mathematicalSet
instUnion
union_comm
union_left_comm 📖mathematicalSet
instUnion
ext
union_nonempty 📖mathematicalNonempty
Set
instUnion
union_right_comm 📖mathematicalSet
instUnion
ext
union_self 📖mathematicalSet
instUnion
ext
union_subset 📖mathematicalSet
instHasSubset
instUnion
union_subset_iff 📖mathematicalSet
instHasSubset
instUnion
union_subset_union 📖mathematicalSet
instHasSubset
instUnion
union_subset_union_left 📖mathematicalSet
instHasSubset
instUnionunion_subset_union
Subset.rfl
union_subset_union_right 📖mathematicalSet
instHasSubset
instUnionunion_subset_union
Subset.rfl
union_union_distrib_left 📖mathematicalSet
instUnion
sup_sup_distrib_left
union_union_distrib_right 📖mathematicalSet
instUnion
sup_sup_distrib_right
union_union_union_comm 📖mathematicalSet
instUnion
sup_sup_sup_comm
union_univ 📖mathematicalSet
instUnion
univ
sup_top_eq
univ_eq_empty_iff 📖mathematicaluniv
Set
instEmptyCollection
IsEmpty
eq_empty_iff_forall_notMem
IsEmpty.false
univ_inter 📖mathematicalSet
instInter
univ
top_inf_eq
univ_nonempty 📖mathematicalNonempty
univ
univ_subset_iff 📖mathematicalSet
instHasSubset
univ
top_le_iff
univ_union 📖mathematicalSet
instUnion
univ
top_sup_eq
univ_unique 📖mathematicaluniv
Set
instSingletonSet
Unique.instInhabited
ext
Unique.instSubsingleton

Set.MemUnion

Theorems

NameKindAssumesProvesValidatesDepends On
elim 📖Set
Set.instMembership
Set.instUnion

Set.Nonempty

Definitions

NameCategoryTheorems
some 📖CompOp
3 mathmath: some_mem, NormedRing.algEquivComplexOfComplete_symm_apply, SimpleGraph.killCopies_def

Theorems

NameKindAssumesProvesValidatesDepends On
coe_sort 📖mathematicalSet.NonemptySet.ElemSet.nonempty_coe_sort
empty_ssubset 📖mathematicalSet.NonemptySet
Set.instHasSSubset
Set.instEmptyCollection
Set.empty_ssubset
eq_univ 📖mathematicalSet.NonemptySet.univSet.eq_univ_of_forall
inl 📖mathematicalSet.NonemptySet
Set.instUnion
inr 📖mathematicalSet.NonemptySet
Set.instUnion
left 📖Set.Nonempty
Set
Set.instInter
mono 📖Set
Set.instHasSubset
Set.Nonempty
ne_empty 📖Set.NonemptySet.nonempty_iff_ne_empty
not_subset_empty 📖mathematicalSet.NonemptySet
Set.instHasSubset
Set.instEmptyCollection
of_diff 📖Set.Nonempty
Set
Set.instSDiff
of_subtype 📖mathematicalSet.Nonemptynonempty_subtype
right 📖Set.Nonempty
Set
Set.instInter
some_mem 📖mathematicalSet.NonemptySet
Set.instMembership
some
to_subtype 📖mathematicalSet.NonemptySet.Elemnonempty_subtype
to_type 📖Set.Nonempty

Set.PiSetCoe

Theorems

NameKindAssumesProvesValidatesDepends On
canLift 📖mathematicalCanLift
Set
Set.instMembership
PiSubtype.canLift
canLift' 📖mathematicalCanLift
Set
Set.instMembership
canLift

Set.Subset

Theorems

NameKindAssumesProvesValidatesDepends On
antisymm 📖Set
Set.instHasSubset
Set.ext
antisymm_iff 📖mathematicalSet
Set.instHasSubset
Eq.subset
Set.instReflSubset
antisymm
refl 📖mathematicalSet
Set.instHasSubset
rfl 📖mathematicalSet
Set.instHasSubset
refl
trans 📖Set
Set.instHasSubset

Set.univ

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty 📖mathematicalSet.Elem
Set.univ
Set.Nonempty.to_subtype
Set.univ_nonempty

SetCoe

Theorems

NameKindAssumesProvesValidatesDepends On
exists 📖mathematicalSet
Set.instMembership
exists' 📖mathematicalSet
Set.instMembership
exists
ext 📖Set
Set.instMembership
ext_iff 📖mathematicalSet
Set.instMembership
ext
forall 📖mathematicalSet
Set.instMembership
forall' 📖mathematicalSet
Set.instMembership
forall

Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
eq_univ_of_nonempty 📖mathematicalSet.NonemptySet.univSet.eq_univ_of_forall
mem_iff_nonempty 📖mathematicalSet
Set.instMembership
Set.Nonempty
set_cases 📖Set
Set.instEmptyCollection
Set.univ
Set.eq_empty_or_nonempty
eq_univ_of_nonempty

Subtype

Theorems

NameKindAssumesProvesValidatesDepends On
mem 📖mathematicalSet
Set.instMembership
prop

(root)

Definitions

NameCategoryTheorems
instCoeTCElem 📖CompOp
1 mathmath: Set.coe_eq_image_val

Theorems

NameKindAssumesProvesValidatesDepends On
set_coe_cast 📖mathematicalSet.ElemSet
Set.instMembership

---

← Back to Index