Documentation Verification Report

Card

πŸ“ Source: Mathlib/Data/Set/Card.lean

Statistics

MetricCount
Definitionsencard, ncard, tacticToFinite_tac, tacticTo_encard_tac
4
Theoremscard_coe_set_eq, exists_not_mem_of_card_lt_enatCard, encard_le, encard_image, encard_range, card_le_card_add_one_iff, card_coe_set_eq, cast_ncard_eq, encard_eq_coe, encard_eq_coe_toFinset_card, encard_lt_encard, encard_lt_top, encard_strictMonoOn, eq_insert_of_subset_of_encard_eq_succ, eq_of_subset_of_encard_le, eq_of_subset_of_encard_le', exists_bijOn_of_encard_eq, exists_encard_eq_coe, exists_injOn_of_encard_le, finite_of_encard_le, injOn_of_encard_image_eq, ncard_strictMonoOn, encard_eq, exists_subset_ncard_eq, exists_superset_ncard_eq, ncard, encard_image, ncard_image, encard_range, encard_pos, ncard_pos, cast_ncard, cast_ncard_sdiff, coe_fintypeCard, diff_nonempty_of_ncard_lt_ncard, encard_add_encard_compl, encard_coe_eq_coe_finsetCard, encard_congr, encard_diff, encard_diff_add_encard, encard_diff_add_encard_inter, encard_diff_add_encard_of_subset, encard_diff_singleton_add_one, encard_diff_singleton_of_mem, encard_empty, encard_eq_add_one_iff, encard_eq_coe_toFinset_card, encard_eq_encard_iff_encard_diff_eq_encard_diff, encard_eq_four, encard_eq_one, encard_eq_three, encard_eq_top, encard_eq_top_iff, encard_eq_two, encard_eq_zero, encard_exchange, encard_exchange', encard_image_le, encard_insert_le, encard_insert_of_notMem, encard_le_card, encard_le_coe_iff, encard_le_coe_iff_finite_ncard_le, encard_le_encard, encard_le_encard_diff_add_encard, encard_le_encard_iff_encard_diff_le_encard_diff, encard_le_encard_of_injOn, encard_le_one_iff, encard_le_one_iff_eq, encard_le_one_iff_subsingleton, encard_lt_encard_iff_encard_diff_lt_encard_diff, encard_lt_top_iff, encard_mono, encard_ne_add_one, encard_ne_top_iff, encard_ne_zero, encard_ne_zero_of_mem, encard_pair, encard_pi_eq_prod_encard, encard_pos, encard_preimage_of_bijective, encard_preimage_of_injective_subset_range, encard_preimage_val_le_encard_left, encard_preimage_val_le_encard_right, encard_prod, encard_singleton, encard_singleton_inter, encard_strictMono, encard_tsub_one_le_encard_diff_singleton, encard_union_add_encard_inter, encard_union_eq, encard_union_le, encard_univ, encard_univ_coe, eq_empty_or_encard_eq_top_or_encard_diff_singleton_lt, eq_insert_of_ncard_eq_succ, eq_of_subset_of_ncard_le, eq_univ_iff_ncard, even_card_insert_iff, even_ncard_compl_iff, exists_eq_insert_iff_ncard, exists_mem_notMem_of_ncard_lt_ncard, exists_ne_map_eq_of_encard_lt_of_maps_to, exists_ne_map_eq_of_ncard_lt_of_maps_to, exists_ne_of_one_lt_encard, exists_ne_of_one_lt_ncard, exists_subset_card_eq, exists_subset_encard_eq, exists_subset_or_subset_of_two_mul_lt_ncard, exists_subsuperset_card_eq, exists_superset_subset_encard_eq, fiber_ncard_ne_zero_iff_mem_image, finite_iff_finite_of_encard_eq_encard, finite_of_encard_eq_coe, finite_of_encard_le_coe, finite_of_ncard_ne_zero, finite_of_ncard_pos, infinite_iff_infinite_of_encard_eq_encard, injOn_of_ncard_image_eq, inj_on_of_surj_on_of_ncard_le, le_ncard_diff, le_ncard_of_inj_on_range, map_eq_of_subset, ncard_add_ncard_compl, ncard_coe, ncard_coe_finset, ncard_compl, ncard_congr, ncard_congr', ncard_def, ncard_diff, ncard_diff_add_ncard, ncard_diff_add_ncard_of_subset, ncard_diff_singleton_add_one, ncard_diff_singleton_le, ncard_diff_singleton_lt_of_mem, ncard_diff_singleton_of_mem, ncard_empty, ncard_eq_four, ncard_eq_ncard_iff_ncard_diff_eq_ncard_diff, ncard_eq_of_bijective, ncard_eq_one, ncard_eq_succ, ncard_eq_three, ncard_eq_toFinset_card, ncard_eq_toFinset_card', ncard_eq_two, ncard_eq_zero, ncard_exchange, ncard_exchange', ncard_graphOn, ncard_image_iff, ncard_image_le, ncard_image_of_injOn, ncard_image_of_injective, ncard_insert_eq_ite, ncard_insert_le, ncard_insert_of_mem, ncard_insert_of_notMem, ncard_inter_add_ncard_diff_eq_ncard, ncard_inter_add_ncard_union, ncard_inter_le_ncard_left, ncard_inter_le_ncard_right, ncard_le_card, ncard_le_encard, ncard_le_ncard, ncard_le_ncard_diff_add_ncard, ncard_le_ncard_iff_ncard_diff_le_ncard_diff, ncard_le_ncard_image_add_one_iff, ncard_le_ncard_insert, ncard_le_ncard_of_injOn, ncard_le_one, ncard_le_one_iff, ncard_le_one_iff_eq, ncard_le_one_iff_subset_singleton, ncard_le_one_iff_subsingleton, ncard_le_one_of_subsingleton, ncard_lt_card, ncard_lt_ncard, ncard_lt_ncard_iff_ncard_diff_lt_ncard_diff, ncard_map, ncard_mono, ncard_ne_zero_of_mem, ncard_pair, ncard_pos, ncard_powerset, ncard_preimage_of_injective_subset_range, ncard_prod, ncard_range_of_injective, ncard_singleton, ncard_singleton_inter, ncard_strictMono, ncard_subtype, ncard_union_add_ncard_inter, ncard_union_eq, ncard_union_eq_iff, ncard_union_le, ncard_union_lt, ncard_univ, nonempty_inter_compl_of_ncard_add_ncard_lt, nonempty_inter_of_le_ncard_add_ncard, nonempty_inter_of_lt_ncard_add_ncard, nonempty_of_encard_ne_zero, nonempty_of_ncard_ne_zero, odd_card_insert_iff, odd_ncard_compl_iff, one_le_encard_iff_nonempty, one_le_encard_insert, one_le_ncard_insert, one_lt_encard_iff, one_lt_encard_iff_nontrivial, one_lt_ncard, one_lt_ncard_iff, one_lt_ncard_iff_nontrivial, one_lt_ncard_iff_nontrivial_and_finite, one_lt_ncard_of_nonempty_of_even, pred_ncard_le_ncard_diff_singleton, sep_of_ncard_eq, subset_iff_eq_of_ncard_le, surj_on_of_inj_on_of_ncard_le, three_lt_ncard, three_lt_ncard_iff, toENat_cardinalMk, toENat_cardinalMk_subtype, tsub_encard_le_encard_diff, two_lt_ncard, two_lt_ncard_iff, union_ne_univ_of_ncard_add_ncard_lt
228
Total232

ENat

Theorems

NameKindAssumesProvesValidatesDepends On
card_coe_set_eq πŸ“–mathematicalβ€”card
Set.Elem
Set.encard
β€”β€”

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
exists_not_mem_of_card_lt_enatCard πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
card
ENat.card
Finset
instMembership
β€”Mathlib.Tactic.Contrapose.contrapose₁
Set.eq_univ_of_forall
Set.encard_univ

Function.Embedding

Theorems

NameKindAssumesProvesValidatesDepends On
encard_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Set.encard
β€”ENat.card_le_card_of_injective
injective

Function.Injective

Theorems

NameKindAssumesProvesValidatesDepends On
encard_image πŸ“–mathematicalβ€”Set.encard
Set.image
β€”Set.InjOn.encard_image
injOn
encard_range πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.card
Set.encard
Set.range
β€”Set.image_univ
encard_image
Set.encard_univ
le_refl

Function.Surjective

Theorems

NameKindAssumesProvesValidatesDepends On
card_le_card_add_one_iff πŸ“–mathematicalβ€”Nat.card
Set
Set.instInsert
Set.instSingletonSet
β€”isEmpty_or_nonempty
Nat.card_of_isEmpty
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
Set.ncard_range_of_injective
Function.injective_surjInv
Set.ncard_add_ncard_compl
Set.toFinite
Subtype.finite
add_le_add_iff_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
Function.surjInv_eq
Set.ncard_le_one_iff_subset_singleton
Set.ncard_le_one

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
card_coe_set_eq πŸ“–mathematicalβ€”card
Set.Elem
Set.ncard
β€”β€”

Set

Definitions

NameCategoryTheorems
encard πŸ“–CompOp
176 mathmath: Function.Embedding.encard_le, Matroid.IsBase.encard_eq_eRank, Matroid.IsBase.encard_diff_comm, encard_eq_zero, toENat_cardinalMk_subtype, Matroid.eRk_lt_encard_iff_dep, encard_diff_add_encard, ENNReal.tsum_set_const, encard_union_eq, encard_prod, tsub_encard_le_encard_diff, AddCircle.card_torsion_le_of_isSMulRegular, ncard_le_encard, encard_univ_coe, Metric.encard_minimalCover, Finset.set_encard_biUnion_le, ncard_def, encard_preimage_val_le_encard_left, encard_pair, Matroid.eRank_le_encard_add_eRk_compl, Matroid.Indep.eRk_eq_encard, Matroid.isBasis_iff_indep_encard_eq_of_finite, Matroid.eRank_freeOn, MeasureTheory.Measure.count_apply, chainHeight_le_encard, Submodule.spanRank_toENat_eq_iInf_encard, Matroid.le_eRk_iff, Matroid.IsBase.encard_eq_encard_of_isBase, Nat.count_le_setENCard, Subgroup.IsComplement.encard_left, encard_union_add_encard_inter, encard_preimage_val_le_encard_right, encard_exchange, Matroid.eRk_lt_encard_iff_dep_of_finite, Metric.exists_set_encard_eq_coveringNumber, encard_neg, Matroid.IsBasis.eRk_eq_encard, Matroid.eRk_dual_add_eRank', Subgroup.IsComplement.encard_right, Finite.encard_lt_top, encard_union_le, encard_strictMono, encard_iUnion_of_finite, coe_fintypeCard, Matroid.IsBasis'.encard_eq_eRk, ENNReal.tsum_set_one, encard_empty, eq_empty_or_encard_eq_top_or_encard_diff_singleton_lt, encard_eq_top_iff, encard_congr, encard_eq_encard_iff_encard_diff_eq_encard_diff, encard_eq_three, AddSubgroup.IsComplement.encard_right, AddSubgroup.IsComplement.encard_left, Matroid.IsBasis.encard_eq_eRk, Matroid.eRk_dual_add_eRank, Metric.IsCover.externalCoveringNumber_le_encard, encard_diff_add_encard_of_subset, encard_eq_top, Nat.encard_range, encard_lt_top_iff, encard_le_card, Metric.coveringNumber_zero, Finite.encard_lt_encard, Matroid.IsBasis.encard_eq_encard, SimpleGraph.vertexCoverNum_le_encard_edgeSet, Matroid.Indep.encard_le_eRk_of_subset, Matroid.eRank_le_encard_ground, encard_preimage_of_injective_subset_range, Matroid.IsBasis'.eRk_eq_encard, exists_eq_chainHeight_of_chainHeight_ne_top, encard_univ, Submodule.spanFinrank_span_le_encard, Matroid.Indep.encard_le_eRank, Matrix.eRank_diagonal, Metric.IsCover.coveringNumber_le_encard, measurable_encard, Matroid.eRk_le_iff, one_le_encard_insert, Nonempty.encard_pos, SimpleGraph.IsVertexCover.vertexCoverNum_le, Matroid.indep_iff_eRk_eq_encard_of_finite, encard_iUnion_le_of_finite, AddCircle.card_torsion_le_of_isSMulRegular_int, Ideal.height_le_ringKrullDim_quotient_add_encard, encard_eq_coe_toFinset_card, Matroid.IsCircuit.eRk_add_one_eq, toENat_rank_span_set, encard_mono, encard_singleton_inter, Infinite.encard_eq, Matroid.ExchangeProperty.encard_diff_le_aux, Function.Injective.encard_image, encard_le_coe_iff_finite_ncard_le, encard_eq_one, encard_eq_add_one_iff, encard_le_encard_iff_encard_diff_le_encard_diff, encard_ne_add_one, Matroid.eRank_add_eRank_dual, Matroid.eRk_lt_encard_of_dep_of_finite, InjOn.encard_image, Finite.exists_encard_eq_coe, Matroid.indep_iff_eRk_eq_encard, encard_eq_four, Finite.encard_eq_coe, Matroid.eRk_freeOn, encard_image_le, Matroid.eRk_union_le_encard_add_eRk, Matroid.eRk_union_le_eRk_add_encard, encard_coe_eq_coe_finsetCard, toENat_cardinalMk, encard_smul_set, one_lt_encard_iff, encard_pos, SimpleGraph.vertexCoverNum_exists, encard_le_coe_iff, encard_eq_two, encard_lt_encard_iff_encard_diff_lt_encard_diff, encard_pi_eq_prod_encard, encard_le_chainHeight_of_isChain, encard_diff, Matroid.ExchangeProperty.encard_isBase_eq, Ideal.height_le_height_add_encard_of_subset, Matroid.Dep.eRk_lt_encard, Metric.externalCoveringNumber_le_encard_self, Finite.encard_biUnion, Finite.encard_eq_coe_toFinset_card, Matroid.isBasis'_iff_indep_encard_eq_of_finite, encard_insert_le, encard_le_one_iff, Metric.encard_maximalSeparatedSet, encard_diff_singleton_add_one, Metric.IsSeparated.encard_le_packingNumber, encard_le_encard_of_injOn, encard_tsub_one_le_encard_diff_singleton, LinearIndepOn.encard_le_toENat_rank, Matroid.eq_eRk_iff, one_lt_encard_iff_nontrivial, Metric.packingNumber_zero, exists_isChain_of_le_chainHeight, ENat.card_coe_set_eq, encard_diff_add_encard_inter, Function.Injective.encard_range, encard_le_one_iff_eq, encard_add_encard_compl, encard_le_encard, Metric.exists_set_encard_eq_packingNumber, Metric.encard_le_of_isSeparated, Matroid.eRk_le_encard, encard_exchange', encard_iUnion_le_of_fintype, one_le_encard_iff_nonempty, Submodule.FG.exists_span_set_encard_eq_spanFinrank, encard_eq_chainHeight_of_isChain, encard_insert_of_notMem, encard_diff_singleton_of_mem, Metric.coveringNumber_le_encard_self, chainHeight_eq_iSup, Finite.cast_ncard_eq, Matroid.ExchangeProperty.encard_diff_eq, Finite.encard_biUnion_le, exists_eq_chainHeight_of_finite, Metric.packingNumber_le_encard_self, Matroid.IsBase.encard_compl_eq, Finite.encard_strictMonoOn, encard_le_one_iff_subsingleton, encard_singleton, SimpleGraph.exists_of_le_vertexCoverNum, Metric.externalCoveringNumber_zero, Matroid.IsBasis'.encard_eq_encard, encard_preimage_of_bijective, encard_le_encard_diff_add_encard, ringKrullDim_le_ringKrullDim_quotient_add_encard, encard_inv, encard_vadd_set, chainHeight_eq_top_iff
ncard πŸ“–CompOp
175 mathmath: ncard_vadd_set, ncard_mono, ncard_image_le, even_ncard_compl_iff, ncard_eq_four, MulAction.IsBlock.ncard_dvd_card, Matroid.IsBase.ncard_eq_ncard_of_isBase, ncard_subtype, finsum_one, ncard_eq_three, IsCyclotomicExtension.Rat.ncard_primesOver_of_prime_pow, ncard_le_encard, Submodule.spanFinrank_span_le_ncard_of_finite, ncard_exchange', Infinite.ncard, SimpleGraph.Walk.IsPath.ncard_neighborSet_toSubgraph_internal_eq_two, AddAction.IsBlock.ncard_block_add_ncard_orbit_eq, ncard_def, AddSubgroup.IsComplement.ncard_right, three_lt_ncard_iff, Ideal.ncard_primesOver_mul_ncard_primesOver, ncard_inv, ncard_le_one_iff_subset_singleton, ncard_Ioo_nat, ncard_Ico_nat, odd_ncard_compl_iff, ncard_Iio_nat, three_lt_ncard, ncard_diff_add_ncard_of_subset, odd_card_insert_iff, SimpleGraph.IsClique.even_iff_exists_isMatching, ncard_eq_two, SimpleGraph.ncard_oddComponents_mono, one_lt_ncard, SimpleGraph.ConnectedComponent.even_ncard_supp_sdiff_rep, one_le_primesOver_ncard, ProbabilityTheory.setBernoulli_singleton, MulAction.index_stabilizer, ncard_eq_of_bijective, ncard_le_card, Polynomial.card_eq_of_natDegree_le_of_coeff_le, ncard_le_ncard_insert, ncard_Iic_nat, ncard_lt_card, SubAddAction.ofFixingAddSubgroup.append_left, exists_eq_insert_iff_ncard, ncard_empty, ncard_diff_singleton_le, ncard_uIcc_nat, ncard_map, ncard_le_one_iff_subsingleton, SimpleGraph.ConnectedComponent.Represents.ncard_sdiff_of_mem, one_lt_ncard_iff_nontrivial, ncard_compl, ncard_eq_one, Setoid.IsPartition.ncard_eq_finsum, Ideal.height_le_card_of_mem_minimalPrimes_span, ncard_le_one, ncard_smul_set, ncard_union_eq, SimpleGraph.Walk.IsCycle.ncard_neighborSet_toSubgraph_eq_two, ncard_Icc_nat, ncard_le_ncard_image_add_one_iff, ncard_le_one_of_subsingleton, ncard_congr, even_card_insert_iff, ncard_inter_add_ncard_union, Ideal.ncard_primesOver_mul_ramificationIdxIn_mul_inertiaDegIn, ncard_diff_add_ncard, Nat.card_coe_set_eq, Finset.set_ncard_biUnion_le, ncard_graphOn, ncard_inter_le_ncard_left, ncard_coe, one_le_ncard_insert, ncard_insert_eq_ite, ncard_powerset, ncard_add_ncard_compl, Subgroup.IsComplement.ncard_right, ncard_eq_zero, ncard_inter_add_ncard_diff_eq_ncard, ncard_le_ncard_iff_ncard_diff_le_ncard_diff, ncard_union_le, SimpleGraph.ConnectedComponent.Represents.ncard_eq, ncard_pair, ncard_eq_toFinset_card', ncard_diff_singleton_add_one, Nonempty.ncard_pos, ncard_le_ncard_diff_add_ncard, IsCyclotomicExtension.Rat.ncard_primesOver_of_prime, ncard_union_lt, ncard_le_one_iff_eq, RootPairing.ncard_eq_finrank_of_linearIndepOn_of, ncard_Ioc_nat, two_lt_ncard, two_lt_ncard_iff, ncard_iUnion_le_of_fintype, encard_le_coe_iff_finite_ncard_le, Matroid.IsBase.ncard_diff_comm, Nat.count_le_setNCard, Finite.ncard_biUnion, ncard_insert_of_mem, SubMulAction.ofFixingSubgroup.append_left, MulAction.IsBlock.ncard_block_eq_relIndex, Finite.ncard_biUnion_le, MulAction.IsMultiplyPretransitive.index_of_fixingSubgroup_eq, AddAction.IsBlock.ncard_dvd_card, PowerSeries.exist_eq_span_eq_ncard_of_X_notMem, pred_ncard_le_ncard_diff_singleton, ncard_prod, ncard_le_one_iff, ncard_preimage_of_injective_subset_range, SubMulAction.ofFixingSubgroup.append_right, ncard_union_eq_iff, InjOn.ncard_image, exists_union_disjoint_cardinal_eq_iff, cast_ncard, Infinite.exists_subset_ncard_eq, ncard_diff, SimpleGraph.even_ncard_image_val_supp_sdiff_image_val_rep_union, cast_ncard_sdiff, ncard_iUnion_of_finite, MulAction.IsBlock.ncard_block_mul_ncard_orbit_eq, ncard_congr', ncard_lt_ncard, ncard_pos, eq_univ_iff_ncard, ncard_union_add_ncard_inter, Matrix.trace_permutation, le_ncard_of_inj_on_range, SimpleGraph.odd_ncard_oddComponents, Submodule.FG.generators_ncard, ncard_insert_le, Polynomial.ncard_rootSet_le, ncard_image_of_injective, ncard_image_of_injOn, SimpleGraph.ConnectedComponent.Represents.ncard_inter, AddSubgroup.IsComplement.ncard_left, ncard_inter_le_ncard_right, one_lt_ncard_iff_nontrivial_and_finite, ncard_eq_toFinset_card, ncard_singleton, SubAddAction.ofFixingAddSubgroup.append_right, Ideal.ncard_primesOver_mul_card_inertia_mul_finrank, ncard_image_iff, ncard_diff_singleton_lt_of_mem, Finite.ncard_strictMonoOn, Subgroup.IsComplement.ncard_left, DomMulAct.stabilizer_ncard, SimpleGraph.ConnectedComponent.Represents.ncard_sdiff_of_notMem, ncard_univ, ncard_insert_of_notMem, ncard_eq_succ, ncard_le_ncard, one_lt_ncard_iff, Finite.cast_ncard_eq, powersetCard.ncard_eq, ncard_neg, SimpleGraph.ConnectedComponent.odd_oddComponents_ncard_subset_supp, ncard_strictMono, AddAction.IsBlock.ncard_block_eq_relIndex, AddAction.index_stabilizer, ncard_range_of_injective, Group.sum_card_conj_classes_eq_card, ncard_coe_finset, ncard_lt_ncard_iff_ncard_diff_lt_ncard_diff, Polynomial.card_mahlerMeasure_le_prod, ncard_exchange, ncard_eq_ncard_iff_ncard_diff_eq_ncard_diff, ncard_diff_singleton_of_mem, ncard_le_ncard_of_injOn, le_ncard_diff, ncard_singleton_inter, ncard_iUnion_le_of_finite, measurable_ncard
tacticToFinite_tac πŸ“–CompOpβ€”
tacticTo_encard_tac πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
cast_ncard πŸ“–mathematicalβ€”Cardinal
Cardinal.instNatCast
ncard
Elem
β€”Nat.cast_card
cast_ncard_sdiff πŸ“–mathematicalSet
instHasSubset
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
ncard
instSDiff
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
β€”ncard_diff
Finite.subset
Nat.cast_sub
ncard_le_ncard
coe_fintypeCard πŸ“–mathematicalβ€”ENat
ENat.instNatCast
Fintype.card
Elem
encard
β€”encard_eq_coe_toFinset_card
toFinset_card
diff_nonempty_of_ncard_lt_ncard πŸ“–mathematicalncardNonempty
Set
instSDiff
β€”nonempty_iff_ne_empty
diff_eq_empty
LT.lt.not_ge
ncard_le_ncard
encard_add_encard_compl πŸ“–mathematicalβ€”ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
encard
Compl.compl
Set
instCompl
univ
β€”encard_union_eq
disjoint_compl_right
union_compl_self
encard_coe_eq_coe_finsetCard πŸ“–mathematicalβ€”encard
SetLike.coe
Finset
Finset.instSetLike
ENat
ENat.instNatCast
Finset.card
β€”Finset.finite_toSet
Finite.encard_eq_coe_toFinset_card
toFinite
Finite.of_fintype
toFinite_toFinset
Finset.toFinset_coe
encard_congr πŸ“–mathematicalβ€”encardβ€”ENat.card_congr
encard_diff πŸ“–mathematicalSet
instHasSubset
encard
instSDiff
ENat
instSubENat
β€”encard_diff_add_encard_of_subset
AddLECancellable.eq_tsub_of_add_eq
ENat.addLECancellable_of_ne_top
encard_ne_top_iff
encard_diff_add_encard πŸ“–mathematicalβ€”ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
encard
Set
instSDiff
instUnion
β€”encard_union_eq
disjoint_sdiff_left
diff_union_self
encard_diff_add_encard_inter πŸ“–mathematicalβ€”ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
encard
Set
instSDiff
instInter
β€”encard_union_eq
disjoint_sdiff_inter
diff_union_inter
encard_diff_add_encard_of_subset πŸ“–mathematicalSet
instHasSubset
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
encard
instSDiff
β€”encard_union_eq
disjoint_sdiff_left
diff_union_of_subset
encard_diff_singleton_add_one πŸ“–mathematicalSet
instMembership
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
encard
instSDiff
instSingletonSet
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”encard_insert_of_notMem
insert_diff_singleton
insert_eq_of_mem
encard_diff_singleton_of_mem πŸ“–mathematicalSet
instMembership
encard
instSDiff
instSingletonSet
ENat
instSubENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”encard_diff_singleton_add_one
AddRightCancelSemigroup.toIsRightCancelAdd
WithTop.one_ne_top
tsub_add_cancel_of_le
WithTop.existsAddOfLE
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
WithTop.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithTop.instOrderedSub
Nat.instOrderedSub
self_le_add_left
WithTop.canonicallyOrderedAdd
encard_empty πŸ“–mathematicalβ€”encard
Set
instEmptyCollection
ENat
instZeroENat
β€”encard_eq_zero
encard_eq_add_one_iff πŸ“–mathematicalβ€”encard
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Set
instMembership
instInsert
β€”nonempty_of_encard_ne_zero
Unique.instSubsingleton
NeZero.one
insert_diff_singleton
insert_eq_of_mem
AddRightCancelSemigroup.toIsRightCancelAdd
WithTop.one_ne_top
encard_diff_singleton_add_one
encard_insert_of_notMem
encard_eq_coe_toFinset_card πŸ“–mathematicalβ€”encard
ENat
ENat.instNatCast
Finset.card
toFinset
β€”toFinite
Finite.of_fintype
Finite.encard_eq_coe_toFinset_card
toFinite_toFinset
encard_eq_encard_iff_encard_diff_eq_encard_diff πŸ“–mathematicalβ€”encard
Set
instSDiff
β€”encard_diff_add_encard_inter
inter_comm
AddRightCancelSemigroup.toIsRightCancelAdd
LT.lt.ne
Finite.encard_lt_top
encard_eq_four πŸ“–mathematicalβ€”encard
ENat
instOfNatAtLeastTwo
ENat.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set
instInsert
instSingletonSet
β€”Nat.instAtLeastTwoHAddOfNat
nonempty_of_encard_ne_zero
encard_eq_three
AddRightCancelSemigroup.toIsRightCancelAdd
WithTop.one_ne_top
encard_insert_of_notMem
insert_diff_singleton
insert_eq_of_mem
Eq.subset
instReflSubset
encard_singleton
encard_eq_one πŸ“–mathematicalβ€”encard
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Set
instSingletonSet
β€”nonempty_of_encard_ne_zero
NeZero.one
Finite.eq_of_subset_of_encard_le
finite_singleton
encard_singleton
encard_eq_three πŸ“–mathematicalβ€”encard
ENat
instOfNatAtLeastTwo
ENat.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set
instInsert
instSingletonSet
β€”Nat.instAtLeastTwoHAddOfNat
nonempty_of_encard_ne_zero
encard_eq_two
AddRightCancelSemigroup.toIsRightCancelAdd
WithTop.one_ne_top
encard_insert_of_notMem
insert_diff_singleton
insert_eq_of_mem
Eq.subset
instReflSubset
encard_singleton
encard_eq_top πŸ“–mathematicalInfiniteencard
Top.top
ENat
instTopENat
β€”encard_eq_top_iff
encard_eq_top_iff πŸ“–mathematicalβ€”encard
Top.top
ENat
instTopENat
Infinite
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
lt_top_iff_ne_top
encard_lt_top_iff
encard_eq_two πŸ“–mathematicalβ€”encard
ENat
instOfNatAtLeastTwo
ENat.instNatCast
Nat.instAtLeastTwoHAddOfNat
Set
instInsert
instSingletonSet
β€”Nat.instAtLeastTwoHAddOfNat
nonempty_of_encard_ne_zero
encard_eq_one
AddRightCancelSemigroup.toIsRightCancelAdd
WithTop.one_ne_top
one_add_one_eq_two
encard_insert_of_notMem
insert_diff_singleton
insert_eq_of_mem
Eq.subset
instReflSubset
encard_pair
encard_eq_zero πŸ“–mathematicalβ€”encard
ENat
instZeroENat
Set
instEmptyCollection
β€”encard.eq_1
ENat.card_eq_zero_iff_empty
isEmpty_subtype
eq_empty_iff_forall_notMem
encard_exchange πŸ“–mathematicalSet
instMembership
encard
instInsert
instSDiff
instSingletonSet
β€”encard_insert_of_notMem
encard_diff_singleton_add_one
encard_exchange' πŸ“–mathematicalSet
instMembership
encard
instSDiff
instInsert
instSingletonSet
β€”insert_diff_singleton_comm
encard_exchange
encard_image_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
image
β€”isEmpty_or_nonempty
eq_empty_of_isEmpty
instIsEmptySubtype
image_empty
encard_empty
InjOn.encard_image
Function.invFunOn_injOn_image
encard_le_encard
Function.invFunOn_image_image_subset
encard_insert_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
Set
instInsert
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”union_singleton
encard_singleton
encard_union_le
encard_insert_of_notMem πŸ“–mathematicalSet
instMembership
encard
instInsert
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”union_singleton
encard_union_eq
encard_singleton
encard_le_card πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
ENat.card
β€”encard_le_encard
subset_univ
encard_univ
encard_le_coe_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
ENat.instNatCast
Finite
β€”finite_of_encard_le_coe
ENat.le_coe_iff
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
encard_le_coe_iff_finite_ncard_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
ENat.instNatCast
Finite
ncard
β€”encard_le_coe_iff
ncard_def
ENat.toNat_coe
Finite.cast_ncard_eq
encard_le_encard πŸ“–mathematicalSet
instHasSubset
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
β€”union_diff_cancel
encard_union_eq
disjoint_sdiff_right
le_self_add
encard_le_encard_diff_add_encard πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Set
instSDiff
β€”LE.le.trans_eq
encard_mono
subset_union_left
encard_diff_add_encard
encard_le_encard_iff_encard_diff_le_encard_diff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
Set
instSDiff
β€”encard_diff_add_encard_inter
inter_comm
WithTop.add_le_add_iff_right
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
LT.lt.ne
Finite.encard_lt_top
encard_le_encard_of_injOn πŸ“–mathematicalMapsTo
InjOn
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
β€”InjOn.encard_image
encard_le_encard
encard_le_one_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”encard_le_one_iff_eq
nonempty_iff_ne_empty
HasSubset.Subset.antisymm'
instAntisymmSubset
singleton_subset_iff
encard_le_one_iff_eq πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Set
instEmptyCollection
instSingletonSet
β€”le_iff_lt_or_eq
lt_iff_not_ge
ENat.one_le_iff_ne_zero
encard_eq_zero
encard_eq_one
encard_le_one_iff_subsingleton πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Subsingleton
β€”encard_le_one_iff
Subsingleton.eq_1
encard_lt_encard_iff_encard_diff_lt_encard_diff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
Set
instSDiff
β€”encard_diff_add_encard_inter
inter_comm
WithTop.add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
LT.lt.ne
Finite.encard_lt_top
encard_lt_top_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
Top.top
instTopENat
Finite
β€”by_contra
LT.lt.ne
Infinite.encard_eq
Finite.encard_lt_top
encard_mono πŸ“–mathematicalβ€”Monotone
Set
ENat
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
β€”encard_le_encard
encard_ne_add_one πŸ“–mathematicalβ€”ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
encard
setOf
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
ENat.card
β€”disjoint_singleton_right
encard_union_eq
ext
union_singleton
eq_or_ne
encard_univ
encard_singleton
encard_ne_top_iff πŸ“–mathematicalβ€”Finiteβ€”β€”
encard_ne_zero πŸ“–mathematicalβ€”Nonemptyβ€”encard_eq_zero
nonempty_iff_ne_empty
encard_ne_zero_of_mem πŸ“–β€”Set
instMembership
β€”β€”LT.lt.ne
encard_pos
encard_pair πŸ“–mathematicalβ€”encard
Set
instInsert
instSingletonSet
ENat
instOfNatAtLeastTwo
ENat.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
encard_insert_of_notMem
one_add_one_eq_two
AddRightCancelSemigroup.toIsRightCancelAdd
WithTop.one_ne_top
encard_singleton
encard_pi_eq_prod_encard πŸ“–mathematicalβ€”encard
pi
univ
Finset.prod
ENat
CommSemiring.toCommMonoid
instCommSemiringENat
Finset.univ
β€”Cardinal.mk_congr
Cardinal.mk_pi
Cardinal.prod_eq_of_fintype
Cardinal.toENat_lift
map_prod
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
OrderRingHom.instRingHomClass
Finset.prod_congr
encard_pos πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instZeroENat
encard
Nonempty
β€”pos_iff_ne_zero
encard_ne_zero
encard_preimage_of_bijective πŸ“–mathematicalFunction.Bijectiveencard
preimage
β€”encard_preimage_of_injective_subset_range
Function.Bijective.injective
Function.Surjective.range_eq
Function.Bijective.surjective
encard_preimage_of_injective_subset_range πŸ“–mathematicalSet
instHasSubset
range
encard
preimage
β€”Function.Injective.encard_image
image_preimage_eq_inter_range
inter_eq_self_of_subset_left
encard_preimage_val_le_encard_left πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
Elem
preimage
Set
instMembership
β€”Function.Embedding.encard_le
encard_preimage_val_le_encard_right πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
Elem
preimage
Set
instMembership
β€”Function.Embedding.encard_le
encard_prod πŸ“–mathematicalβ€”encard
SProd.sprod
Set
instSProd
ENat
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”ENat.card_congr
ENat.card_prod
encard_singleton πŸ“–mathematicalβ€”encard
Set
instSingletonSet
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”encard.eq_1
ENat.card_eq_coe_fintype_card
Unique.instSubsingleton
Fintype.card_ofSubsingleton
Nat.cast_one
encard_singleton_inter πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
Set
instInter
instSingletonSet
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”encard_singleton
encard_le_encard
inter_subset_left
encard_strictMono πŸ“–mathematicalβ€”StrictMono
Set
ENat
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
β€”Finite.encard_lt_encard
toFinite
Subtype.finite
encard_tsub_one_le_encard_diff_singleton πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instSubENat
encard
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Set
instSDiff
instSingletonSet
β€”encard_singleton
tsub_encard_le_encard_diff
encard_union_add_encard_inter πŸ“–mathematicalβ€”ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
encard
Set
instUnion
instInter
β€”diff_union_self
encard_union_eq
disjoint_sdiff_left
add_right_comm
encard_diff_add_encard_inter
encard_union_eq πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
encard
instUnion
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”ENat.card_congr
ENat.card_sum
encard_union_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
Set
instUnion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”encard_union_add_encard_inter
le_self_add
encard_univ πŸ“–mathematicalβ€”encard
univ
ENat.card
β€”encard.eq_1
ENat.card_congr
encard_univ_coe πŸ“–mathematicalβ€”encard
Elem
univ
β€”encard_univ
eq_empty_or_encard_eq_top_or_encard_diff_singleton_lt πŸ“–mathematicalβ€”Set
instEmptyCollection
encard
Top.top
ENat
instTopENat
instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instSDiff
instSingletonSet
β€”eq_empty_or_nonempty
finite_or_infinite
encard_diff_singleton_add_one
add_zero
WithTop.add_lt_add_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
LT.lt.ne
Finite.encard_lt_top
Finite.diff
zero_lt_one
WithTop.zeroLEOneClass
Nat.instZeroLEOneClass
NeZero.one
Nat.instNontrivial
WithTop.nontrivial
Infinite.encard_eq
eq_insert_of_ncard_eq_succ πŸ“–mathematicalncardSet
instMembership
instInsert
β€”finite_of_ncard_pos
LT.lt.trans_eq
Finset.card_eq_succ
ncard_eq_toFinset_card
ncard_coe_finset
eq_of_subset_of_ncard_le πŸ“–β€”Set
instHasSubset
ncard
β€”β€”Finite.eq_of_subset_of_encard_le'
Finite.cast_ncard_eq
Finite.subset
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
eq_univ_iff_ncard πŸ“–mathematicalβ€”univ
ncard
Nat.card
β€”compl_empty_iff
ncard_eq_zero
toFinite
Subtype.finite
ncard_add_ncard_compl
left_eq_add
AddLeftCancelSemigroup.toIsLeftCancelAdd
even_card_insert_iff πŸ“–mathematicalSet
instMembership
Even
ncard
instInsert
Odd
Nat.instSemiring
β€”ncard_insert_of_notMem
Nat.even_add_one
Nat.not_even_iff_odd
even_ncard_compl_iff πŸ“–mathematicalEven
Nat.card
ncard
Compl.compl
Set
instCompl
β€”Nat.even_add
ncard_add_ncard_compl
toFinite
Subtype.finite
exists_eq_insert_iff_ncard πŸ“–mathematicalβ€”Set
instMembership
instInsert
instHasSubset
ncard
β€”finite_or_infinite
ncard_eq_toFinset_card
Finite.toFinset_subset_toFinset
Finset.exists_eq_insert_iff
Infinite.ncard
Unique.instSubsingleton
Finite.insert
exists_mem_notMem_of_ncard_lt_ncard πŸ“–mathematicalncardSet
instMembership
β€”diff_nonempty_of_ncard_lt_ncard
exists_ne_map_eq_of_encard_lt_of_maps_to πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
MapsTo
Set
instMembership
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
Function.Embedding.encard_le
exists_ne_map_eq_of_ncard_lt_of_maps_to πŸ“–β€”ncard
Set
instMembership
β€”β€”LE.le.not_gt
ncard_le_ncard_of_injOn
exists_ne_of_one_lt_encard πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
encard
Set
instMembership
β€”one_lt_encard_iff
Mathlib.Tactic.Push.not_and_eq
exists_ne_of_one_lt_ncard πŸ“–mathematicalncardSet
instMembership
β€”finite_of_ncard_ne_zero
LT.lt.ne
LT.lt.trans
zero_lt_one
Nat.instZeroLEOneClass
Finset.exists_mem_ne
ncard_eq_toFinset_card
exists_subset_card_eq πŸ“–mathematicalncardSet
instHasSubset
β€”exists_subsuperset_card_eq
empty_subset
ncard_empty
Nat.instCanonicallyOrderedAdd
exists_subset_encard_eq πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
Set
instHasSubset
β€”ENat.nat_induction
empty_subset
encard_empty
le_trans
Nat.cast_add
Nat.cast_one
Nat.cast_succ
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
Nat.cast_le
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
exists_of_ssubset
HasSubset.Subset.ssubset_of_ne
instIsNonstrictStrictOrderSubsetSSubset
instAntisymmSubset
insert_subset
encard_insert_of_notMem
Subset.rfl
top_le_iff
exists_subset_or_subset_of_two_mul_lt_ncard πŸ“–mathematicalncard
Set
instUnion
instHasSubsetβ€”finite_of_ncard_ne_zero
LT.lt.ne
LE.le.trans_lt
Finite.subset
subset_union_left
subset_union_right
Finset.exists_subset_or_subset_of_two_mul_lt_card
Finite.toFinset_union
ncard_eq_toFinset_card
ncard_coe_finset
exists_subsuperset_card_eq πŸ“–β€”Set
instHasSubset
ncard
β€”β€”infinite_or_finite
Subset.rfl
Infinite.ncard
CanLift.prf
instCanLiftFinsetCoeFinite
Finite.subset
Finset.exists_subsuperset_card_eq
instIsConcreteLE
ncard_coe_finset
exists_superset_subset_encard_eq πŸ“–β€”Set
instHasSubset
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
β€”β€”eq_or_ne
Subset.rfl
top_le_iff
ExistsAddOfLE.exists_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
WithTop.le_of_add_le_add_right
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
add_comm
encard_diff_add_encard_of_subset
exists_subset_encard_eq
subset_union_left
union_subset
HasSubset.Subset.trans
instIsTransSubset
diff_subset
encard_union_eq
disjoint_of_subset_right
disjoint_sdiff_right
fiber_ncard_ne_zero_iff_mem_image πŸ“–mathematicalβ€”Set
instMembership
image
β€”nonempty_of_ncard_ne_zero
ncard_ne_zero_of_mem
mem_sep
Finite.subset
sep_subset
finite_iff_finite_of_encard_eq_encard πŸ“–mathematicalencardFiniteβ€”encard_lt_top_iff
finite_of_encard_eq_coe πŸ“–mathematicalencard
ENat
ENat.instNatCast
Finiteβ€”finite_of_encard_le_coe
Eq.le
finite_of_encard_le_coe πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
ENat.instNatCast
Finiteβ€”encard_lt_top_iff
LE.le.trans_lt
WithTop.coe_lt_top
finite_of_ncard_ne_zero πŸ“–mathematicalβ€”Finiteβ€”finite_or_infinite
Infinite.ncard
finite_of_ncard_pos πŸ“–mathematicalncardFiniteβ€”finite_of_ncard_ne_zero
LT.lt.ne
infinite_iff_infinite_of_encard_eq_encard πŸ“–mathematicalencardInfiniteβ€”encard_eq_top_iff
injOn_of_ncard_image_eq πŸ“–mathematicalncard
image
InjOnβ€”Finite.injOn_of_encard_image_eq
Finite.cast_ncard_eq
Finite.image
inj_on_of_surj_on_of_ncard_le πŸ“–β€”Set
instMembership
ncard
β€”β€”Finset.inj_on_of_surj_on_of_card_le
mem_toFinset
ncard_eq_toFinset_card'
le_ncard_diff πŸ“–mathematicalβ€”ncard
Set
instSDiff
β€”tsub_le_iff_left
Nat.instOrderedSub
add_comm
ncard_le_ncard_diff_add_ncard
le_ncard_of_inj_on_range πŸ“–mathematicalSet
instMembership
ncardβ€”ncard_eq_toFinset_card
Finset.le_card_of_inj_on_range
map_eq_of_subset πŸ“–β€”Set
instHasSubset
image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”β€”eq_of_subset_of_ncard_le
Eq.ge
ncard_map
ncard_add_ncard_compl πŸ“–mathematicalβ€”ncard
Compl.compl
Set
instCompl
Nat.card
β€”ncard_univ
ncard_union_eq
disjoint_compl_right
union_compl_self
ncard_coe πŸ“–mathematicalβ€”ncard
Elem
univ
β€”ncard_univ
ncard_coe_finset πŸ“–mathematicalβ€”ncard
SetLike.coe
Finset
Finset.instSetLike
Finset.card
β€”toFinite
Finite.of_fintype
ncard_eq_toFinset_card
Finset.finite_toSet
Finset.finite_toSet_toFinset
ncard_compl πŸ“–mathematicalβ€”ncard
Compl.compl
Set
instCompl
Nat.card
β€”ncard_add_ncard_compl
ncard_congr πŸ“–mathematicalSet
instMembership
ncardβ€”Nat.card_congr
ncard_congr' πŸ“–mathematicalβ€”ncardβ€”Cardinal.toNat_congr
ncard_def πŸ“–mathematicalβ€”ncard
ENat.toNat
encard
β€”β€”
ncard_diff πŸ“–mathematicalSet
instHasSubset
ncard
instSDiff
β€”finite_or_infinite
ncard_diff_add_ncard_of_subset
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Infinite.ncard
Infinite.diff
ncard_diff_add_ncard πŸ“–mathematicalβ€”ncard
Set
instSDiff
instUnion
β€”ncard_union_eq
disjoint_sdiff_left
Finite.diff
diff_union_self
ncard_diff_add_ncard_of_subset πŸ“–mathematicalSet
instHasSubset
ncard
instSDiff
β€”Nat.cast_add
Finite.cast_ncard_eq
Finite.subset
Finite.diff
encard_diff_add_encard_of_subset
ncard_diff_singleton_add_one πŸ“–mathematicalSet
instMembership
ncard
instSDiff
instSingletonSet
β€”Nat.cast_add
Nat.cast_one
Finite.cast_ncard_eq
Finite.diff
encard_diff_singleton_add_one
ncard_diff_singleton_le πŸ“–mathematicalβ€”ncard
Set
instSDiff
instSingletonSet
β€”finite_or_infinite
ncard_le_ncard
diff_subset
Infinite.ncard
Infinite.diff
zero_le
Nat.instCanonicallyOrderedAdd
ncard_diff_singleton_lt_of_mem πŸ“–mathematicalSet
instMembership
ncard
instSDiff
instSingletonSet
β€”ncard_diff_singleton_add_one
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
ncard_diff_singleton_of_mem πŸ“–mathematicalSet
instMembership
ncard
instSDiff
instSingletonSet
β€”infinite_or_finite
Infinite.encard_eq
Infinite.diff
finite_singleton
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
eq_tsub_of_add_eq
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
ncard_diff_singleton_add_one
ncard_empty πŸ“–mathematicalβ€”ncard
Set
instEmptyCollection
β€”ncard_eq_zero
toFinite
Finite.of_fintype
ncard_eq_four πŸ“–mathematicalβ€”ncard
Set
instInsert
instSingletonSet
β€”Nat.instAtLeastTwoHAddOfNat
encard_eq_four
ncard_def
ncard_eq_ncard_iff_ncard_diff_eq_ncard_diff πŸ“–mathematicalβ€”ncard
Set
instSDiff
β€”ncard_inter_add_ncard_diff_eq_ncard
inter_comm
AddLeftCancelSemigroup.toIsLeftCancelAdd
ncard_eq_of_bijective πŸ“–mathematicalSet
instMembership
ncardβ€”ext
image_univ
Fintype.card_fin
Nat.card_eq_fintype_card
ncard_univ
InjOn.ncard_image
ncard_eq_one πŸ“–mathematicalβ€”ncard
Set
instSingletonSet
β€”finite_of_ncard_ne_zero
ne_zero_of_eq_one
Finset.card_eq_one
ncard_eq_toFinset_card'
ncard_singleton
ncard_eq_succ πŸ“–mathematicalβ€”ncard
Set
instMembership
instInsert
β€”eq_insert_of_ncard_eq_succ
ncard_insert_of_notMem
Finite.subset
LE.le.trans_eq
subset_insert
ncard_eq_three πŸ“–mathematicalβ€”ncard
Set
instInsert
instSingletonSet
β€”Nat.instAtLeastTwoHAddOfNat
encard_eq_three
ncard_def
ncard_eq_toFinset_card πŸ“–mathematicalβ€”ncard
Finset.card
Finite.toFinset
β€”Nat.card_coe_set_eq
Nat.card_eq_fintype_card
Finite.card_toFinset
ncard_eq_toFinset_card' πŸ“–mathematicalβ€”ncard
Finset.card
toFinset
β€”Nat.card_eq_fintype_card
toFinset_card
ncard_eq_two πŸ“–mathematicalβ€”ncard
Set
instInsert
instSingletonSet
β€”Nat.instAtLeastTwoHAddOfNat
encard_eq_two
ncard_def
ncard_eq_zero πŸ“–mathematicalβ€”ncard
Set
instEmptyCollection
β€”Finite.cast_ncard_eq
Nat.cast_zero
encard_eq_zero
ncard_exchange πŸ“–mathematicalSet
instMembership
ncard
instInsert
instSDiff
instSingletonSet
β€”encard_exchange
ncard_exchange' πŸ“–mathematicalSet
instMembership
ncard
instSDiff
instInsert
instSingletonSet
β€”ncard_exchange
singleton_union
union_diff_distrib
diff_singleton_eq_self
mem_singleton_iff
ncard_graphOn πŸ“–mathematicalβ€”ncard
graphOn
β€”InjOn.ncard_image
fst_injOn_graph
image_fst_graphOn
ncard_image_iff πŸ“–mathematicalβ€”ncard
image
InjOn
β€”injOn_of_ncard_image_eq
InjOn.ncard_image
ncard_image_le πŸ“–mathematicalβ€”ncard
image
β€”Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Finite.cast_ncard_eq
Finite.image
encard_image_le
ncard_image_of_injOn πŸ“–mathematicalInjOnncard
image
β€”InjOn.ncard_image
ncard_image_of_injective πŸ“–mathematicalβ€”ncard
image
β€”InjOn.ncard_image
Function.Injective.injOn
ncard_insert_eq_ite πŸ“–mathematicalβ€”ncard
Set
instInsert
instMembership
β€”ncard_insert_of_mem
ncard_insert_of_notMem
ncard_insert_le πŸ“–mathematicalβ€”ncard
Set
instInsert
β€”finite_or_infinite
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Nat.cast_add
Nat.cast_one
Finite.cast_ncard_eq
Finite.insert
encard_insert_le
Infinite.ncard
Infinite.mono
subset_insert
ncard_insert_of_mem πŸ“–mathematicalSet
instMembership
ncard
instInsert
β€”insert_eq_of_mem
ncard_insert_of_notMem πŸ“–mathematicalSet
instMembership
ncard
instInsert
β€”Finite.cast_ncard_eq
Finite.insert
Nat.cast_add
Nat.cast_one
encard_insert_of_notMem
ncard_inter_add_ncard_diff_eq_ncard πŸ“–mathematicalβ€”ncard
Set
instInter
instSDiff
β€”ncard_union_eq
disjoint_of_subset_left
inter_subset_right
disjoint_sdiff_right
Finite.inter_of_left
Finite.diff
union_comm
diff_union_inter
ncard_inter_add_ncard_union πŸ“–mathematicalβ€”ncard
Set
instInter
instUnion
β€”add_comm
ncard_union_add_ncard_inter
ncard_inter_le_ncard_left πŸ“–mathematicalβ€”ncard
Set
instInter
β€”ncard_le_ncard
inter_subset_left
ncard_inter_le_ncard_right πŸ“–mathematicalβ€”ncard
Set
instInter
β€”ncard_le_ncard
inter_subset_right
ncard_le_card πŸ“–mathematicalβ€”ncard
Nat.card
β€”ncard_le_ncard
subset_univ
toFinite
Subtype.finite
ncard_univ
ncard_le_encard πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
ncard
encard
β€”ENat.coe_toNat_le_self
ncard_le_ncard πŸ“–mathematicalSet
instHasSubset
ncardβ€”Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Finite.cast_ncard_eq
Finite.subset
encard_mono
ncard_le_ncard_diff_add_ncard πŸ“–mathematicalβ€”ncard
Set
instSDiff
β€”finite_or_infinite
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Nat.cast_add
Finite.cast_ncard_eq
Finite.diff
encard_le_encard_diff_add_encard
Infinite.ncard
ncard_le_ncard_iff_ncard_diff_le_ncard_diff πŸ“–mathematicalβ€”ncard
Set
instSDiff
β€”ncard_inter_add_ncard_diff_eq_ncard
inter_comm
add_le_add_iff_left
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
ncard_le_ncard_image_add_one_iff πŸ“–mathematicalβ€”ncard
image
Set
instInsert
instSingletonSet
β€”mapsTo_image
image_injective
Subtype.val_injective
image_insert_eq
image_singleton
Function.Surjective.card_le_card_add_one_iff
surjective_mapsTo_image_restrict
ncard_le_ncard_insert πŸ“–mathematicalβ€”ncard
Set
instInsert
β€”finite_or_infinite
ncard_insert_eq_ite
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
Infinite.ncard
ncard_le_ncard_of_injOn πŸ“–mathematicalSet
instMembership
InjOn
ncardβ€”encard_le_encard_of_injOn
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Finite.cast_ncard_eq
Finite.finite_of_encard_le
ncard_le_one πŸ“–mathematicalβ€”ncardβ€”ncard_eq_toFinset_card
ncard_le_one_iff πŸ“–mathematicalβ€”ncardβ€”ncard_le_one
ncard_le_one_iff_eq πŸ“–mathematicalβ€”ncard
Set
instEmptyCollection
instSingletonSet
β€”eq_empty_or_nonempty
ncard_empty
Nat.instCanonicallyOrderedAdd
ncard_le_one_iff
HasSubset.Subset.antisymm'
instAntisymmSubset
singleton_subset_iff
ncard_le_one_iff_subset_singleton πŸ“–mathematicalβ€”ncard
Set
instHasSubset
instSingletonSet
β€”ncard_eq_toFinset_card
Finset.coe_singleton
ncard_le_one_iff_subsingleton πŸ“–mathematicalβ€”ncard
Subsingleton
β€”ncard_le_one
ncard_le_one_of_subsingleton πŸ“–mathematicalβ€”ncardβ€”toFinite
Subtype.finite
Finite.of_subsingleton
ncard_eq_toFinset_card
Finset.card_le_one_of_subsingleton
ncard_lt_card πŸ“–mathematicalβ€”ncard
Nat.card
β€”ncard_lt_ncard
ssubset_univ_iff
toFinite
Subtype.finite
ncard_univ
ncard_lt_ncard πŸ“–mathematicalSet
instHasSSubset
ncardβ€”Nat.cast_lt
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Finite.cast_ncard_eq
Finite.subset
HasSSubset.SSubset.subset
instIsNonstrictStrictOrderSubsetSSubset
Finite.encard_lt_encard
ncard_lt_ncard_iff_ncard_diff_lt_ncard_diff πŸ“–mathematicalβ€”ncard
Set
instSDiff
β€”ncard_inter_add_ncard_diff_eq_ncard
inter_comm
add_lt_add_iff_left
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
ncard_map πŸ“–mathematicalβ€”ncard
image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”ncard_image_of_injective
Function.Embedding.inj'
ncard_mono πŸ“–mathematicalβ€”Monotone
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
Nat.instPreorder
ncard
β€”ncard_le_ncard
toFinite
Subtype.finite
ncard_ne_zero_of_mem πŸ“–β€”Set
instMembership
β€”β€”LT.lt.ne
ncard_pos
ncard_pair πŸ“–mathematicalβ€”ncard
Set
instInsert
instSingletonSet
β€”ncard_insert_of_notMem
ncard_singleton
ncard_pos πŸ“–mathematicalβ€”ncard
Nonempty
β€”pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
ncard_eq_zero
nonempty_iff_ne_empty
ncard_powerset πŸ“–mathematicalβ€”ncard
Set
powerset
Monoid.toNatPow
Nat.instMonoid
β€”Nat.instAtLeastTwoHAddOfNat
Cardinal.mk_powerset
Cardinal.instCharZero
cast_ncard
Finite.powerset
ncard_preimage_of_injective_subset_range πŸ“–mathematicalSet
instHasSubset
range
ncard
preimage
β€”ncard_image_of_injective
image_preimage_eq_iff
ncard_prod πŸ“–mathematicalβ€”ncard
SProd.sprod
Set
instSProd
β€”encard_prod
ENat.toNat_mul
ncard_range_of_injective πŸ“–mathematicalβ€”ncard
range
Nat.card
β€”image_univ
ncard_image_of_injective
ncard_univ
ncard_singleton πŸ“–mathematicalβ€”ncard
Set
instSingletonSet
β€”encard_singleton
ncard_singleton_inter πŸ“–mathematicalβ€”ncard
Set
instInter
instSingletonSet
β€”Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Finite.cast_ncard_eq
toFinite
Finite.Set.finite_inter_of_left
Finite.of_fintype
Nat.cast_one
encard_singleton_inter
ncard_strictMono πŸ“–mathematicalβ€”StrictMono
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
Nat.instPreorder
ncard
β€”ncard_lt_ncard
toFinite
Subtype.finite
ncard_subtype πŸ“–mathematicalβ€”ncard
setOf
Set
instMembership
instInter
β€”ext
ncard_image_of_injective
Subtype.coe_injective
ncard_union_add_ncard_inter πŸ“–mathematicalβ€”ncard
Set
instUnion
instInter
β€”Nat.cast_add
Finite.cast_ncard_eq
Finite.union
Finite.subset
inter_subset_left
encard_union_add_encard_inter
ncard_union_eq πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
ncard
instUnion
β€”Nat.cast_add
Finite.cast_ncard_eq
Finite.union
encard_union_eq
ncard_union_eq_iff πŸ“–mathematicalβ€”ncard
Set
instUnion
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”ncard_union_add_ncard_inter
left_eq_add
AddLeftCancelSemigroup.toIsLeftCancelAdd
ncard_eq_zero
Finite.inter_of_left
disjoint_iff_inter_eq_empty
ncard_union_le πŸ“–mathematicalβ€”ncard
Set
instUnion
β€”finite_or_infinite
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Nat.cast_add
Finite.cast_ncard_eq
Finite.subset
subset_union_left
subset_union_right
encard_union_le
Infinite.ncard
zero_le
Nat.instCanonicallyOrderedAdd
ncard_union_lt πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
ncard
instUnion
β€”LE.le.lt_of_ne
ncard_union_le
ncard_union_eq_iff
ncard_univ πŸ“–mathematicalβ€”ncard
univ
Nat.card
β€”Nat.card_univ
nonempty_inter_compl_of_ncard_add_ncard_lt πŸ“–mathematicalncard
Nat.card
Nonempty
Set
instInter
Compl.compl
instCompl
β€”compl_union
nonempty_compl
union_ne_univ_of_ncard_add_ncard_lt
nonempty_inter_of_le_ncard_add_ncard πŸ“–mathematicalNat.card
ncard
Nonempty
Set
instInter
β€”LT.lt.trans_le
ncard_lt_card
ncard_union_add_ncard_inter
toFinite
Subtype.finite
ncard_pos
Finite.Set.finite_inter_of_left
lt_add_iff_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
nonempty_inter_of_lt_ncard_add_ncard πŸ“–mathematicalNat.card
ncard
Nonempty
Set
instInter
β€”LE.le.trans_lt
ncard_le_card
ncard_union_add_ncard_inter
toFinite
Subtype.finite
ncard_pos
Finite.Set.finite_inter_of_left
lt_add_iff_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
nonempty_of_encard_ne_zero πŸ“–mathematicalβ€”Nonemptyβ€”nonempty_iff_ne_empty
encard_eq_zero
nonempty_of_ncard_ne_zero πŸ“–mathematicalβ€”Nonemptyβ€”nonempty_iff_ne_empty
ncard_empty
odd_card_insert_iff πŸ“–mathematicalSet
instMembership
Odd
Nat.instSemiring
ncard
instInsert
Even
β€”ncard_insert_of_notMem
Nat.odd_add
odd_ncard_compl_iff πŸ“–mathematicalEven
Nat.card
Odd
Nat.instSemiring
ncard
Compl.compl
Set
instCompl
β€”Nat.not_even_iff_odd
even_ncard_compl_iff
one_le_encard_iff_nonempty πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
encard
Nonempty
β€”nonempty_iff_ne_empty
encard_eq_zero
ENat.one_le_iff_ne_zero
one_le_encard_insert πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
encard
Set
instInsert
β€”ENat.one_le_iff_ne_zero
encard_ne_zero_of_mem
mem_insert
one_le_ncard_insert πŸ“–mathematicalβ€”ncard
Set
instInsert
β€”ncard_ne_zero_of_mem
mem_insert
one_lt_encard_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
encard
Set
instMembership
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
Mathlib.Tactic.Push.not_and_eq
encard_le_one_iff
one_lt_encard_iff_nontrivial πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
encard
Nontrivial
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
encard_le_one_iff_subsingleton
one_lt_ncard πŸ“–mathematicalβ€”ncard
Set
instMembership
β€”ncard_eq_toFinset_card
one_lt_ncard_iff πŸ“–mathematicalβ€”ncard
Set
instMembership
β€”one_lt_ncard
one_lt_ncard_iff_nontrivial πŸ“–mathematicalβ€”ncard
Nontrivial
β€”not_subsingleton_iff
ncard_le_one_iff_subsingleton
not_le
one_lt_ncard_iff_nontrivial_and_finite πŸ“–mathematicalβ€”ncard
Nontrivial
Finite
β€”finite_of_ncard_pos
one_lt_ncard_iff_nontrivial
finite_coe_iff
one_lt_ncard_of_nonempty_of_even πŸ“–β€”Nonempty
Even
ncard
β€”β€”ncard_pos
pred_ncard_le_ncard_diff_singleton πŸ“–mathematicalβ€”ncard
Set
instSDiff
instSingletonSet
β€”ncard_diff_singleton_of_mem
le_refl
diff_singleton_eq_self
sep_of_ncard_eq πŸ“–β€”ncard
setOf
Set
instMembership
β€”β€”sep_eq_self_iff_mem_true
eq_of_subset_of_ncard_le
Eq.le
subset_iff_eq_of_ncard_le πŸ“–mathematicalncardSet
instHasSubset
β€”eq_of_subset_of_ncard_le
Eq.subset
instReflSubset
surj_on_of_inj_on_of_ncard_le πŸ“–β€”Set
instMembership
ncard
β€”β€”Finset.surj_on_of_inj_on_of_card_le
mem_toFinset
ncard_eq_toFinset_card'
three_lt_ncard πŸ“–mathematicalβ€”ncard
Set
instMembership
β€”three_lt_ncard_iff
three_lt_ncard_iff πŸ“–mathematicalβ€”ncard
Set
instMembership
β€”ncard_eq_toFinset_card
toENat_cardinalMk πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
Cardinal
ENat
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Cardinal.commSemiring
PartialOrder.toPreorder
Cardinal.partialOrder
instCommSemiringENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderRingHom.instFunLike
Cardinal.toENat
Elem
encard
β€”β€”
toENat_cardinalMk_subtype πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
Cardinal
ENat
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Cardinal.commSemiring
PartialOrder.toPreorder
Cardinal.partialOrder
instCommSemiringENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderRingHom.instFunLike
Cardinal.toENat
encard
setOf
β€”β€”
tsub_encard_le_encard_diff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instSubENat
encard
Set
instSDiff
β€”tsub_le_iff_left
add_comm
encard_le_encard_diff_add_encard
two_lt_ncard πŸ“–mathematicalβ€”ncard
Set
instMembership
β€”two_lt_ncard_iff
two_lt_ncard_iff πŸ“–mathematicalβ€”ncard
Set
instMembership
β€”ncard_eq_toFinset_card
union_ne_univ_of_ncard_add_ncard_lt πŸ“–β€”ncard
Nat.card
β€”β€”Mathlib.Tactic.Contrapose.contrapose₃
ncard_univ
ncard_union_le

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
cast_ncard_eq πŸ“–mathematicalβ€”ENat
ENat.instNatCast
Set.ncard
Set.encard
β€”Set.ncard.eq_1
ENat.coe_toNat_eq_self
Set.encard_eq_top_iff
Set.Infinite.eq_1
encard_eq_coe πŸ“–mathematicalβ€”Set.encard
ENat
ENat.instNatCast
ENat.toNat
β€”ENat.coe_toNat
LT.lt.ne
encard_lt_top
encard_eq_coe_toFinset_card πŸ“–mathematicalβ€”Set.encard
ENat
ENat.instNatCast
Finset.card
toFinset
β€”Set.encard.eq_1
ENat.card_eq_coe_fintype_card
Set.toFinite
Finite.of_fintype
Set.toFinite_toFinset
Set.toFinset_card
encard_lt_encard πŸ“–mathematicalSet
Set.instHasSSubset
ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Set.encard
β€”LE.le.lt_of_ne
Set.encard_mono
HasSSubset.SSubset.subset
Set.instIsNonstrictStrictOrderSubsetSSubset
HasSSubset.SSubset.ne
Set.instIrreflSSubset
eq_of_subset_of_encard_le
Eq.le
encard_lt_top πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Set.encard
Top.top
instTopENat
β€”induction_on
Set.encard_empty
Set.encard_insert_of_notMem
lt_tsub_iff_right
encard_strictMonoOn πŸ“–mathematicalβ€”StrictMonoOn
Set
ENat
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Set.encard
setOf
Set.Finite
β€”encard_lt_encard
LT.lt.ssubset
eq_insert_of_subset_of_encard_eq_succ πŸ“–mathematicalSet
Set.instHasSubset
Set.encard
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Set.instInsertβ€”Set.encard_eq_one
AddLeftCancelSemigroup.toIsLeftCancelAdd
LT.lt.ne
encard_lt_top
add_comm
Set.encard_diff_add_encard_of_subset
Set.diff_union_of_subset
Set.singleton_union
eq_of_subset_of_encard_le πŸ“–β€”Set
Set.instHasSubset
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Set.encard
β€”β€”eq_of_subset_of_encard_le'
finite_of_encard_le
eq_of_subset_of_encard_le' πŸ“–β€”Set
Set.instHasSubset
ENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Set.encard
β€”β€”WithTop.le_of_add_le_add_right
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
LT.lt.ne
encard_lt_top
subset
Set.encard_diff_add_encard_of_subset
zero_add
HasSubset.Subset.antisymm
Set.instAntisymmSubset
Set.diff_eq_empty
Set.encard_eq_zero
nonpos_iff_eq_zero
WithTop.canonicallyOrderedAdd
Nat.instCanonicallyOrderedAdd
exists_bijOn_of_encard_eq πŸ“–mathematicalSet.encardSet.BijOnβ€”exists_injOn_of_encard_le
Eq.le
eq_of_subset_of_encard_le
image
Set.image_subset_iff
Set.InjOn.encard_image
Set.InjOn.bijOn_image
exists_encard_eq_coe πŸ“–mathematicalβ€”Set.encard
ENat
ENat.instNatCast
β€”encard_eq_coe
exists_injOn_of_encard_le πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Set.encard
Set
Set.instHasSubset
Set.preimage
Set.InjOn
β€”β€”
finite_of_encard_le πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Set.encard
Set.Finiteβ€”Set.encard_lt_top_iff
LE.le.trans_lt
encard_lt_top
injOn_of_encard_image_eq πŸ“–mathematicalSet.encard
Set.image
Set.InjOnβ€”isEmpty_or_nonempty
Set.injOn_iff_invFunOn_image_image_eq_self
eq_of_subset_of_encard_le'
Function.invFunOn_image_image_subset
Eq.le
Set.InjOn.encard_image
Function.invFunOn_injOn_image
ncard_strictMonoOn πŸ“–mathematicalβ€”StrictMonoOn
Set
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Nat.instPreorder
Set.ncard
setOf
Set.Finite
β€”Set.ncard_lt_ncard
LT.lt.ssubset

Set.Infinite

Theorems

NameKindAssumesProvesValidatesDepends On
encard_eq πŸ“–mathematicalSet.InfiniteSet.encard
Top.top
ENat
instTopENat
β€”to_subtype
Set.encard.eq_1
ENat.card_eq_top_of_infinite
exists_subset_ncard_eq πŸ“–mathematicalSet.InfiniteSet
Set.instHasSubset
Set.Finite
Set.ncard
β€”to_subtype
exists_subset_card_eq
Set.infinite_univ
Subtype.coe_preimage_self
Set.Finite.image
Set.ncard_image_of_injective
Subtype.coe_injective
Set.ncard_coe_finset
exists_superset_ncard_eq πŸ“–β€”Set.Infinite
Set
Set.instHasSubset
Set.ncard
β€”β€”exists_subset_ncard_eq
diff
Set.subset_union_left
Set.union_subset
HasSubset.Subset.trans
Set.instIsTransSubset
Set.diff_subset
Set.ncard_union_eq
Set.disjoint_of_subset_right
Set.disjoint_sdiff_right
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
ncard πŸ“–mathematicalSet.InfiniteSet.ncardβ€”Nat.card_coe_set_eq
Nat.card_eq_zero_of_infinite
to_subtype

Set.InjOn

Theorems

NameKindAssumesProvesValidatesDepends On
encard_image πŸ“–mathematicalSet.InjOnSet.encard
Set.image
β€”Set.encard.eq_1
ENat.card_image_of_injOn
ncard_image πŸ“–mathematicalSet.InjOnSet.ncard
Set.image
β€”encard_image

Set.Nat

Theorems

NameKindAssumesProvesValidatesDepends On
encard_range πŸ“–mathematicalβ€”Set.encard
setOf
ENat
ENat.instNatCast
β€”Finset.coe_range
Set.Iio_def
Finset.card_range
Set.encard_coe_eq_coe_finsetCard

Set.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
encard_pos πŸ“–mathematicalSet.NonemptyENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
instZeroENat
Set.encard
β€”Set.encard_pos
ncard_pos πŸ“–mathematicalSet.NonemptySet.ncardβ€”Set.ncard_pos

---

← Back to Index