Documentation Verification Report

Arithmetic

📁 Source: Mathlib/Data/Set/Card/Arithmetic.lean

Statistics

MetricCount
Definitions0
Theoremsexists_disjoint_union_of_even_card, exists_disjoint_union_of_even_card_iff, set_encard_biUnion_le, set_ncard_biUnion_le, encard_biUnion, encard_biUnion_le, ncard_biUnion, ncard_biUnion_le, exists_union_disjoint_cardinal_eq_of_infinite, encard_iUnion_le_of_finite, encard_iUnion_le_of_fintype, encard_iUnion_of_finite, exists_union_disjoint_cardinal_eq_iff, exists_union_disjoint_cardinal_eq_of_even, exists_union_disjoint_ncard_eq_of_even, ncard_iUnion_le_of_finite, ncard_iUnion_le_of_fintype, ncard_iUnion_of_finite, finsum_one
19
Total19

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
exists_disjoint_union_of_even_card 📖mathematicalEven
card
Finset
instUnion
Disjoint
partialOrder
instOrderBot
exists_subset_card_eq
union_sdiff_self_eq_union
card_sdiff_of_subset
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
exists_disjoint_union_of_even_card_iff 📖mathematicalEven
card
Finset
instUnion
Disjoint
partialOrder
instOrderBot
exists_disjoint_union_of_even_card
card_union_of_disjoint
set_encard_biUnion_le 📖mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Set.encard
Set.iUnion
Finset
instMembership
sum
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
instLinearOrderedAddCommMonoidWithTopENat
apply_union_le_sum
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
Set.encard_empty
Set.encard_union_le
set_ncard_biUnion_le 📖mathematicalSet.ncard
Set.iUnion
Finset
instMembership
sum
Nat.instAddCommMonoid
apply_union_le_sum
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Set.ncard_empty
Set.ncard_union_le

Set

Theorems

NameKindAssumesProvesValidatesDepends On
encard_iUnion_le_of_finite 📖mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
iUnion
finsum
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
instLinearOrderedAddCommMonoidWithTopENat
iUnion_congr_Prop
iUnion_true
finsum_congr_Prop
finsum_true
Finite.encard_biUnion_le
finite_univ
encard_iUnion_le_of_fintype 📖mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
encard
iUnion
Finset.sum
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
instLinearOrderedAddCommMonoidWithTopENat
Finset.univ
iUnion_congr_Prop
iUnion_true
Finset.set_encard_biUnion_le
encard_iUnion_of_finite 📖mathematicalPairwise
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
encard
iUnion
finsum
ENat
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
instLinearOrderedAddCommMonoidWithTopENat
finsum_mem_univ
Finite.encard_biUnion
finite_univ
iUnion_congr_Prop
iUnion_true
exists_union_disjoint_cardinal_eq_iff 📖mathematicalEven
ncard
Set
instUnion
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Elem
exists_union_disjoint_cardinal_eq_of_even
finite_or_infinite
ncard_union_eq
finite_union
Even.add_self
Infinite.ncard
exists_union_disjoint_cardinal_eq_of_even 📖mathematicalEven
ncard
Set
instUnion
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Elem
infinite_or_finite
Infinite.exists_union_disjoint_cardinal_eq_of_infinite
Finset.exists_disjoint_union_of_even_card
ncard_eq_toFinset_card
Finite.coe_toFinset
Cardinal.mk_fintype
Fintype.card_coe
exists_union_disjoint_ncard_eq_of_even 📖mathematicalEven
ncard
Set
instUnion
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
exists_union_disjoint_cardinal_eq_of_even
ncard_iUnion_le_of_finite 📖mathematicalncard
iUnion
finsum
Nat.instAddCommMonoid
iUnion_congr_Prop
iUnion_true
finsum_congr_Prop
finsum_true
Finite.ncard_biUnion_le
finite_univ
ncard_iUnion_le_of_fintype 📖mathematicalncard
iUnion
Finset.sum
Nat.instAddCommMonoid
Finset.univ
iUnion_congr_Prop
iUnion_true
Finset.set_ncard_biUnion_le
ncard_iUnion_of_finite 📖mathematicalFinite
Pairwise
Function.onFun
Set
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
ncard
iUnion
finsum
Nat.instAddCommMonoid
finsum_mem_univ
Finite.ncard_biUnion
finite_univ
iUnion_congr_Prop
iUnion_true

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
encard_biUnion 📖mathematicalSet.PairwiseDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.encard
Set.iUnion
Set.instMembership
finsum
ENat
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
instLinearOrderedAddCommMonoidWithTopENat
biUnion
cast_ncard_eq
ncard_biUnion
finsum_mem_congr
Nat.cast_finsum_mem
Mathlib.Tactic.Push.not_forall_eq
Set.insert_diff_self_of_mem
finsum_mem_insert
Set.notMem_diff_of_mem
Set.mem_singleton
diff
Set.iUnion_congr_Prop
Set.insert_diff_singleton
Set.iUnion_iUnion_eq_or_left
Set.Infinite.encard_eq
finsum_congr_Prop
top_add
encard_biUnion_le 📖mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Set.encard
Set.iUnion
Set
Set.instMembership
finsum
LinearOrderedAddCommMonoidWithTop.toAddCommMonoid
instLinearOrderedAddCommMonoidWithTopENat
Set.iUnion_congr_Prop
Finset.set_encard_biUnion_le
ncard_biUnion 📖mathematicalSet.Finite
Set.PairwiseDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.ncard
Set.iUnion
Set.instMembership
finsum
Nat.instAddCommMonoid
finsum_one
finsum_mem_biUnion
finsum_mem_congr
ncard_biUnion_le 📖mathematicalSet.ncard
Set.iUnion
Set
Set.instMembership
finsum
Nat.instAddCommMonoid
Set.iUnion_congr_Prop
Finset.set_ncard_biUnion_le

Set.Infinite

Theorems

NameKindAssumesProvesValidatesDepends On
exists_union_disjoint_cardinal_eq_of_infinite 📖mathematicalSet.InfiniteSet
Set.instUnion
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Elem
to_subtype
Cardinal.eq
Cardinal.add_def
Cardinal.add_mk_eq_self
Set.range_inl_union_range_inr
Set.image_univ
Subtype.range_coe_subtype
Set.disjoint_image_of_injective
Subtype.val_injective
Disjoint.preimage
IsCompl.disjoint
Set.isCompl_range_inl_range_inr
Cardinal.mk_image_eq
Cardinal.mk_preimage_equiv
Cardinal.mk_range_inl
Cardinal.lift_id
Cardinal.mk_range_inr

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
finsum_one 📖mathematicalfinsum
Nat.instAddCommMonoid
Set
Set.instMembership
Set.ncard
Set.infinite_or_finite
Set.Infinite.ncard
finsum_congr_Prop
finsum_zero
finsum_mem_eq_zero_of_infinite
Function.support_const
Set.inter_univ
finsum_mem_eq_finite_toFinset_sum
Finset.sum_const
mul_one
Set.ncard_eq_toFinset_card

---

← Back to Index