Documentation Verification Report

Lattice

πŸ“ Source: Mathlib/Data/Set/Finite/Lattice.lean

Statistics

MetricCount
DefinitionsfintypeBiUnion, fintypeBiUnion', fintypeiUnion, fintypesUnion
4
Theoremsexists_mem_subset_of_finset_subset_biUnion, exists_mem_subset_of_finite_of_subset_sUnion, exists_mem_subset_of_finset_subset_biUnion, finite_biUnion, finite_biUnion', finite_biUnion'', finite_iInter, finite_iUnion, finite_sUnion, bddAbove, bddBelow, bddAbove, bddAbove_biUnion, bddBelow, bddBelow_biUnion, biUnion, biUnion', iInf_biSup_of_antitone, iInf_biSup_of_monotone, iSup_biInf_of_antitone, iSup_biInf_of_monotone, iUnion, of_finite_fibers, preimage', sInter, sUnion, biUnion, iUnion, iUnionβ‚‚, sUnion, finite_biUnion_iff, eq_finite_iUnion_of_finite_subset_iUnion, finite_diff_iUnion_Ioo, finite_diff_iUnion_Ioo', finite_iUnion, finite_iUnion_iff, finite_iUnion_of_subsingleton, finite_subset_iUnion, iInf_iSup_of_antitone, iInf_iSup_of_monotone, iInter_iUnion_of_antitone, iInter_iUnion_of_monotone, iSup_iInf_of_antitone, iSup_iInf_of_monotone, iUnion_iInter_of_antitone, iUnion_iInter_of_monotone, iUnion_pi_of_monotone, iUnion_univ_pi_of_monotone, infinite_iUnion, infinite_of_not_bddAbove, infinite_of_not_bddBelow, map_finite_biInf, map_finite_biSup, map_finite_iInf, map_finite_iSup, toFinset_iUnion, union_finset_finite_of_range_finite, iInf_iSup_of_antitone, iInf_iSup_of_monotone, iSup_iInf_of_antitone, iSup_iInf_of_monotone
61
Total65

Directed

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mem_subset_of_finset_subset_biUnion πŸ“–β€”Directed
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.iUnion
β€”β€”Finset.cons_induction
Finset.coe_empty
Finset.coe_cons
HasSubset.Subset.trans
Set.instIsTransSubset

DirectedOn

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mem_subset_of_finite_of_subset_sUnion πŸ“–mathematicalSet.Nonempty
Set
DirectedOn
Set.instHasSubset
Set.sUnion
Set.instMembershipβ€”exists_mem_subset_of_finset_subset_biUnion
Set.sUnion_eq_biUnion
Set.Finite.coe_toFinset
exists_mem_subset_of_finset_subset_biUnion πŸ“–β€”Set.Nonempty
DirectedOn
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
Set.iUnion
Set.instMembership
β€”β€”Directed.exists_mem_subset_of_finset_subset_biUnion
Set.Nonempty.coe_sort
directed_comp
directed_val
Set.biUnion_eq_iUnion

Finite.Set

Theorems

NameKindAssumesProvesValidatesDepends On
finite_biUnion πŸ“–mathematicalFinite
Set.Elem
Set.iUnion
Set
Set.instMembership
β€”Set.biUnion_eq_iUnion
finite_iUnion
finite_biUnion' πŸ“–mathematicalFinite
Set.Elem
Set.iUnion
Set
Set.instMembership
β€”finite_biUnion
finite_biUnion'' πŸ“–mathematicalFinite
Set.Elem
Set.iUnionβ€”finite_biUnion'
finite_iInter πŸ“–mathematicalFinite
Set.Elem
Set.iInterβ€”subset
Set.iInter_subset
finite_iUnion πŸ“–mathematicalFinite
Set.Elem
Set.iUnionβ€”instFinitePLift
Fintype.finite
finite_sUnion πŸ“–mathematicalFinite
Set.Elem
Set
Set.instMembership
Set.sUnionβ€”Set.sUnion_eq_iUnion
finite_iUnion

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
bddAbove πŸ“–mathematicalβ€”BddAbove
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetLike.coe
Finset
instSetLike
β€”Set.Finite.bddAbove
SemilatticeSup.instIsDirectedOrder
finite_toSet
bddBelow πŸ“–mathematicalβ€”BddBelow
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SetLike.coe
Finset
instSetLike
β€”Set.Finite.bddBelow
SemilatticeInf.instIsCodirectedOrder
finite_toSet

Set

Definitions

NameCategoryTheorems
fintypeBiUnion πŸ“–CompOpβ€”
fintypeBiUnion' πŸ“–CompOpβ€”
fintypeiUnion πŸ“–CompOp
1 mathmath: toFinset_iUnion
fintypesUnion πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
eq_finite_iUnion_of_finite_subset_iUnion πŸ“–mathematicalSet
instHasSubset
iUnion
Finite
instMembership
setOf
Elem
β€”finite_subset_iUnion
Finite.subset
inter_subset_right
inter_subset_left
ext
mem_iUnion
finite_diff_iUnion_Ioo πŸ“–mathematicalβ€”Finite
Set
instSDiff
iUnion
instMembership
Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”finite_of_forall_not_lt_lt
mem_iUnionβ‚‚_of_mem
finite_diff_iUnion_Ioo' πŸ“–mathematicalβ€”Finite
Set
instSDiff
iUnion
Elem
Ioo
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instMembership
β€”iSup_prod
iSup_subtype
iSup_congr_Prop
finite_diff_iUnion_Ioo
finite_iUnion πŸ“–mathematicalFiniteiUnionβ€”toFinite
Finite.Set.finite_iUnion
Finite.to_subtype
finite_iUnion_iff πŸ“–mathematicalPairwise
Disjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Finite
iUnion
setOf
Nonempty
β€”Finite.subset
subset_iUnion
mem_iUnion
Pairwise.eq
not_disjoint_iff
Finite.of_injective
Finite.iUnion
finite_iUnion_of_subsingleton πŸ“–mathematicalβ€”Finite
iUnion
β€”iUnion_plift_down
finite_iUnion_iff
Subsingleton.pairwise
finite_subset_iUnion πŸ“–mathematicalSet
instHasSubset
iUnion
Finite
instMembership
β€”Finite.to_subtype
finite_range
biUnion_range
mem_iUnion
iInf_iSup_of_antitone πŸ“–mathematicalAntitone
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Order.Coframe.toCompleteLattice
iInf
CompleteSemilatticeInf.toInfSet
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”iInf_iSup_of_antitone
iInf_iSup_of_monotone πŸ“–mathematicalMonotone
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Order.Coframe.toCompleteLattice
iInf
CompleteSemilatticeInf.toInfSet
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”iInf_iSup_of_monotone
iInter_iUnion_of_antitone πŸ“–mathematicalAntitone
Set
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
iInter
iUnion
β€”iInf_iSup_of_antitone
iInter_iUnion_of_monotone πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
iInter
iUnion
β€”iInf_iSup_of_monotone
iSup_iInf_of_antitone πŸ“–mathematicalAntitone
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Order.Frame.toCompleteLattice
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iInf
CompleteSemilatticeInf.toInfSet
β€”iSup_iInf_of_antitone
iSup_iInf_of_monotone πŸ“–mathematicalMonotone
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Order.Frame.toCompleteLattice
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iInf
CompleteSemilatticeInf.toInfSet
β€”iSup_iInf_of_monotone
iUnion_iInter_of_antitone πŸ“–mathematicalAntitone
Set
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
iUnion
iInter
β€”iSup_iInf_of_antitone
iUnion_iInter_of_monotone πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
iUnion
iInter
β€”iSup_iInf_of_monotone
iUnion_pi_of_monotone πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
iUnion
pi
β€”pi_def
biInter_eq_iInter
iInter_congr_Prop
preimage_iUnion
iUnion_iInter_of_monotone
Fintype.finite
SemilatticeSup.instIsDirectedOrder
preimage_mono
iUnion_univ_pi_of_monotone πŸ“–mathematicalMonotone
Set
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
instCompleteAtomicBooleanAlgebra
iUnion
pi
univ
β€”iUnion_pi_of_monotone
finite_univ
infinite_iUnion πŸ“–mathematicalSetInfinite
iUnion
β€”not_injective_infinite_finite
Finite.to_subtype
Finite.finite_subsets
subset_iUnion
infinite_of_not_bddAbove πŸ“–mathematicalBddAbove
Preorder.toLE
Infiniteβ€”Finite.bddAbove
infinite_of_not_bddBelow πŸ“–mathematicalBddBelow
Preorder.toLE
Infiniteβ€”Finite.bddBelow
map_finite_biInf πŸ“–mathematicalβ€”DFunLike.coe
iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
Set
instMembership
β€”map_finset_inf
Finset.inf_eq_iInf
iInf_congr_Prop
Finite.mem_toFinset
map_finite_biSup πŸ“–mathematicalβ€”DFunLike.coe
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set
instMembership
β€”map_finset_sup
Finset.sup_eq_iSup
iSup_congr_Prop
Finite.mem_toFinset
map_finite_iInf πŸ“–mathematicalβ€”DFunLike.coe
iInf
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
β€”iInf_univ
map_finite_biInf
finite_univ
map_finite_iSup πŸ“–mathematicalβ€”DFunLike.coe
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”iSup_univ
map_finite_biSup
finite_univ
toFinset_iUnion πŸ“–mathematicalβ€”toFinset
iUnion
fintypeiUnion
PLift.fintype
Finset.biUnion
Finset.univ
β€”Finset.ext
union_finset_finite_of_range_finite πŸ“–mathematicalβ€”Finite
iUnion
SetLike.coe
Finset
Finset.instSetLike
β€”biUnion_range
Finite.biUnion
Finset.finite_toSet

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
bddAbove πŸ“–mathematicalβ€”BddAbove
Preorder.toLE
β€”induction_on
bddAbove_empty
BddAbove.insert
bddAbove_biUnion πŸ“–mathematicalβ€”BddAbove
Preorder.toLE
Set.iUnion
Set
Set.instMembership
β€”induction_on
Set.biUnion_empty
Set.biUnion_insert
bddBelow πŸ“–mathematicalβ€”BddBelow
Preorder.toLE
β€”bddAbove
OrderDual.isDirected_le
OrderDual.instNonempty
bddBelow_biUnion πŸ“–mathematicalβ€”BddBelow
Preorder.toLE
Set.iUnion
Set
Set.instMembership
β€”bddAbove_biUnion
OrderDual.isDirected_le
OrderDual.instNonempty
biUnion πŸ“–mathematicalSet.FiniteSet.iUnion
Set
Set.instMembership
β€”biUnion'
biUnion' πŸ“–mathematicalSet.FiniteSet.iUnion
Set
Set.instMembership
β€”to_subtype
Set.biUnion_eq_iUnion
Set.finite_iUnion
iInf_biSup_of_antitone πŸ“–mathematicalAntitone
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Order.Coframe.toCompleteLattice
iInf
CompleteSemilatticeInf.toInfSet
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set
Set.instMembership
β€”iSup_biInf_of_monotone
Antitone.dual_right
iInf_biSup_of_monotone πŸ“–mathematicalMonotone
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Order.Coframe.toCompleteLattice
iInf
CompleteSemilatticeInf.toInfSet
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
Set
Set.instMembership
β€”iSup_biInf_of_antitone
Monotone.dual_right
iSup_biInf_of_antitone πŸ“–mathematicalAntitone
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Order.Frame.toCompleteLattice
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iInf
CompleteSemilatticeInf.toInfSet
Set
Set.instMembership
β€”iSup_biInf_of_monotone
OrderDual.instNonempty
OrderDual.isDirected_le
Antitone.dual_left
iSup_biInf_of_monotone πŸ“–mathematicalMonotone
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Order.Frame.toCompleteLattice
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iInf
CompleteSemilatticeInf.toInfSet
Set
Set.instMembership
β€”induction_on
iInf_congr_Prop
iInf_neg
iInf_top
iSup_const
iInf_insert
Set.forall_mem_insert
iSup_inf_of_monotone
iInfβ‚‚_mono
iUnion πŸ“–mathematicalSet.Finite
Set
Set.instEmptyCollection
Set.iUnionβ€”Set.iUnion_subset
Set.mem_biUnion
Set.mem_empty_iff_false
subset
biUnion
of_finite_fibers πŸ“–β€”Set.Finite
Set
Set.instInter
Set.preimage
Set.instSingletonSet
β€”β€”subset
biUnion
Set.iUnion_congr_Prop
Set.iUnion_exists
Set.biUnion_and'
Set.iUnion_iUnion_eq_right
preimage' πŸ“–β€”Set.Finite
Set.preimage
Set
Set.instSingletonSet
β€”β€”Set.biUnion_preimage_singleton
biUnion
sInter πŸ“–mathematicalSet
Set.instMembership
Set.Finite
Set.sInter
β€”subset
Set.sInter_subset_of_mem
sUnion πŸ“–mathematicalSet.FiniteSet.sUnionβ€”Set.sUnion_eq_biUnion
biUnion

Set.Infinite

Theorems

NameKindAssumesProvesValidatesDepends On
biUnion πŸ“–mathematicalSet.Infinite
Set.InjOn
Set
Set.iUnion
Set.instMembership
β€”Set.biUnion_eq_iUnion
to_subtype
Set.infinite_iUnion
iUnion πŸ“–mathematicalSet.InfiniteSet.iUnionβ€”Set.Finite.subset
Set.subset_iUnion
iUnionβ‚‚ πŸ“–mathematicalSet.InfiniteSet.iUnionβ€”Set.Finite.subset
Set.subset_iUnionβ‚‚
sUnion πŸ“–mathematicalSet.Infinite
Set
Set.sUnionβ€”Set.sUnion_eq_iUnion
to_subtype
Set.infinite_iUnion
Subtype.coe_injective

Set.PairwiseDisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
finite_biUnion_iff πŸ“–mathematicalSet.PairwiseDisjoint
Set
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.Finite
Set.iUnion
Set.instMembership
setOf
Set.Nonempty
β€”Set.finite_iUnion_iff

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
iInf_iSup_of_antitone πŸ“–mathematicalAntitone
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Order.Coframe.toCompleteLattice
iInf
CompleteSemilatticeInf.toInfSet
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”iSup_iInf_of_monotone
Antitone.dual_right
iInf_iSup_of_monotone πŸ“–mathematicalMonotone
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Order.Coframe.toCompleteLattice
iInf
CompleteSemilatticeInf.toInfSet
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
β€”iSup_iInf_of_antitone
Monotone.dual_right
iSup_iInf_of_antitone πŸ“–mathematicalAntitone
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Order.Frame.toCompleteLattice
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iInf
CompleteSemilatticeInf.toInfSet
β€”iSup_iInf_of_monotone
OrderDual.instNonempty
OrderDual.isDirected_le
Antitone.dual_left
iSup_iInf_of_monotone πŸ“–mathematicalMonotone
PartialOrder.toPreorder
CompleteSemilatticeInf.toPartialOrder
CompleteLattice.toCompleteSemilatticeInf
Order.Frame.toCompleteLattice
iSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
iInf
CompleteSemilatticeInf.toInfSet
β€”iInf_univ
Set.Finite.iSup_biInf_of_monotone
Set.finite_univ

---

← Back to Index