Documentation Verification Report

Monotone

📁 Source: Mathlib/Data/Set/Monotone.lean

Statistics

MetricCount
Definitions0
Theoremsmono, monotone, antitoneOn_of_rightInvOn_of_mapsTo, monotoneOn_of_rightInvOn_of_mapsTo, codRestrict, rangeFactorization, restrict, mono, monotone, congr_antitoneOn, congr_monotoneOn, congr_strictAntiOn, congr_strictMonoOn, antitoneOn_insert_iff, monotoneOn_insert_iff, mono, strictAnti, codRestrict, of_restrict, mono, restrict, strictMono, strictAntiOn_insert_iff, strictAntiOn_insert_iff_of_forall_ge, strictAntiOn_insert_iff_of_forall_le, strictMonoOn_insert_iff, strictMonoOn_insert_iff_of_forall_ge, strictMonoOn_insert_iff_of_forall_le, strictMono_restrict
29
Total29

AntitoneOn

Theorems

NameKindAssumesProvesValidatesDepends On
mono 📖AntitoneOn
Set
Set.instHasSubset
monotone 📖mathematicalAntitoneOnAntitone
Set.Elem
Subtype.preorder
Set
Set.instMembership
Subtype.coe_prop

Function

Theorems

NameKindAssumesProvesValidatesDepends On
antitoneOn_of_rightInvOn_of_mapsTo 📖AntitoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.RightInvOn
Set.MapsTo
MonotoneOn.dual_right
monotoneOn_of_rightInvOn_of_mapsTo
AntitoneOn.dual_left
monotoneOn_of_rightInvOn_of_mapsTo 📖MonotoneOn
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.RightInvOn
Set.MapsTo
le_total
le_refl
le_antisymm
Set.RightInvOn.eq

Monotone

Theorems

NameKindAssumesProvesValidatesDepends On
codRestrict 📖mathematicalMonotone
Set
Set.instMembership
Set.Elem
Subtype.preorder
Set.codRestrict
rangeFactorization 📖mathematicalMonotoneSet.Elem
Set.range
Subtype.preorder
Set
Set.instMembership
Set.rangeFactorization
restrict 📖mathematicalMonotoneSet.Elem
Subtype.preorder
Set
Set.instMembership
Set.restrict

MonotoneOn

Theorems

NameKindAssumesProvesValidatesDepends On
mono 📖MonotoneOn
Set
Set.instHasSubset
monotone 📖mathematicalMonotoneOnMonotone
Set.Elem
Subtype.preorder
Set
Set.instMembership
Subtype.coe_prop

Set

Theorems

NameKindAssumesProvesValidatesDepends On
antitoneOn_insert_iff 📖mathematicalAntitoneOn
Set
instInsert
Preorder.toLE
monotoneOn_insert_iff
monotoneOn_insert_iff 📖mathematicalMonotoneOn
Set
instInsert
Preorder.toLE

Set.EqOn

Theorems

NameKindAssumesProvesValidatesDepends On
congr_antitoneOn 📖mathematicalSet.EqOnAntitoneOnAntitoneOn.congr
symm
congr_monotoneOn 📖mathematicalSet.EqOnMonotoneOnMonotoneOn.congr
symm
congr_strictAntiOn 📖mathematicalSet.EqOnStrictAntiOnStrictAntiOn.congr
symm
congr_strictMonoOn 📖mathematicalSet.EqOnStrictMonoOnStrictMonoOn.congr
symm

StrictAntiOn

Theorems

NameKindAssumesProvesValidatesDepends On
mono 📖StrictAntiOn
Set
Set.instHasSubset
strictAnti 📖mathematicalStrictAntiOnStrictAnti
Set.Elem
Subtype.preorder
Set
Set.instMembership
Subtype.coe_prop

StrictMono

Theorems

NameKindAssumesProvesValidatesDepends On
codRestrict 📖mathematicalStrictMono
Set
Set.instMembership
Set.Elem
Subtype.preorder
Set.codRestrict
of_restrict 📖mathematicalStrictMono
Set.Elem
Subtype.preorder
Set
Set.instMembership
Set.restrict
StrictMonoOnstrictMono_restrict

StrictMonoOn

Theorems

NameKindAssumesProvesValidatesDepends On
mono 📖StrictMonoOn
Set
Set.instHasSubset
restrict 📖mathematicalStrictMonoOnStrictMono
Set.Elem
Subtype.preorder
Set
Set.instMembership
Set.restrict
strictMono_restrict
strictMono 📖mathematicalStrictMonoOnStrictMono
Set.Elem
Subtype.preorder
Set
Set.instMembership
Subtype.coe_prop

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
strictAntiOn_insert_iff 📖mathematicalStrictAntiOn
Set
Set.instInsert
Preorder.toLT
strictMonoOn_insert_iff
strictAntiOn_insert_iff_of_forall_ge 📖mathematicalPreorder.toLEStrictAntiOn
Set
Set.instInsert
Preorder.toLT
strictAntiOn_insert_iff
LE.le.not_gt
strictAntiOn_insert_iff_of_forall_le 📖mathematicalPreorder.toLEStrictAntiOn
Set
Set.instInsert
Preorder.toLT
strictAntiOn_insert_iff
LE.le.not_gt
strictMonoOn_insert_iff 📖mathematicalStrictMonoOn
Set
Set.instInsert
Preorder.toLT
strictMonoOn_insert_iff_of_forall_ge 📖mathematicalPreorder.toLEStrictMonoOn
Set
Set.instInsert
Preorder.toLT
strictMonoOn_insert_iff
LE.le.not_gt
strictMonoOn_insert_iff_of_forall_le 📖mathematicalPreorder.toLEStrictMonoOn
Set
Set.instInsert
Preorder.toLT
strictMonoOn_insert_iff
LE.le.not_gt
strictMono_restrict 📖mathematicalStrictMono
Set.Elem
Subtype.preorder
Set
Set.instMembership
Set.restrict
StrictMonoOn

---

← Back to Index