Documentation Verification Report

NAry

πŸ“ Source: Mathlib/Data/Set/NAry.lean

Statistics

MetricCount
Definitions0
Theoremsimage2, of_image2_left, of_image2_right, image2, exists_mem_image2, forall_mem_image2, image2_assoc, image2_comm, image2_congr, image2_congr', image2_curry, image2_distrib_subset_left, image2_distrib_subset_right, image2_empty_left, image2_empty_right, image2_eq_empty_iff, image2_image2_image2_comm, image2_image_left, image2_image_left_anticomm, image2_image_left_comm, image2_image_right, image2_insert_left, image2_insert_right, image2_inter_left, image2_inter_right, image2_inter_subset_left, image2_inter_subset_right, image2_inter_union_subset, image2_inter_union_subset_union, image2_left, image2_left_comm, image2_left_identity, image2_mk_eq_prod, image2_nonempty_iff, image2_range, image2_right, image2_right_comm, image2_right_identity, image2_singleton, image2_singleton_left, image2_singleton_right, image2_subset, image2_subset_iff, image2_subset_iff_left, image2_subset_iff_right, image2_subset_left, image2_subset_right, image2_swap, image2_union_inter_subset, image2_union_inter_subset_union, image2_union_left, image2_union_right, image_image2, image_image2_antidistrib, image_image2_antidistrib_left, image_image2_antidistrib_right, image_image2_distrib, image_image2_distrib_left, image_image2_distrib_right, image_image2_right_anticomm, image_image2_right_comm, image_prod, image_subset_image2_left, image_subset_image2_right, image_uncurry_prod, mem_image2_iff, subset_image2_diff_left, subset_image2_diff_right
68
Total68

Set

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mem_image2 πŸ“–mathematicalβ€”Set
instMembership
image2
β€”β€”
forall_mem_image2 πŸ“–β€”β€”β€”β€”β€”
image2_assoc πŸ“–mathematicalβ€”image2β€”eq_of_forall_subset_iff
image2_comm πŸ“–mathematicalβ€”image2β€”image2_swap
image2_congr
image2_congr πŸ“–mathematicalβ€”image2β€”β€”
image2_congr' πŸ“–mathematicalβ€”image2β€”image2_congr
image2_curry πŸ“–mathematicalβ€”image2
image
SProd.sprod
Set
instSProd
β€”image_congr
image2_distrib_subset_left πŸ“–mathematicalβ€”Set
instHasSubset
image2
β€”β€”
image2_distrib_subset_right πŸ“–mathematicalβ€”Set
instHasSubset
image2
β€”β€”
image2_empty_left πŸ“–mathematicalβ€”image2
Set
instEmptyCollection
β€”ext
image2_empty_right πŸ“–mathematicalβ€”image2
Set
instEmptyCollection
β€”ext
image2_eq_empty_iff πŸ“–mathematicalβ€”image2
Set
instEmptyCollection
β€”not_nonempty_iff_eq_empty
image2_nonempty_iff
not_and_or
image2_image2_image2_comm πŸ“–mathematicalβ€”image2β€”β€”
image2_image_left πŸ“–mathematicalβ€”image2
image
β€”ext
image2_image_left_anticomm πŸ“–mathematicalβ€”image2
image
β€”image_image2_antidistrib_left
image2_image_left_comm πŸ“–mathematicalβ€”image2
image
β€”image_image2_distrib_left
image2_image_right πŸ“–mathematicalβ€”image2
image
β€”ext
image2_insert_left πŸ“–mathematicalβ€”image2
Set
instInsert
instUnion
image
β€”insert_eq
image2_union_left
image2_singleton_left
image2_insert_right πŸ“–mathematicalβ€”image2
Set
instInsert
instUnion
image
β€”insert_eq
image2_union_right
image2_singleton_right
image2_inter_left πŸ“–mathematicalFunction.Injective2image2
Set
instInter
β€”inter_prod
image_inter
Function.Injective2.uncurry
image2_inter_right πŸ“–mathematicalFunction.Injective2image2
Set
instInter
β€”prod_inter
image_inter
Function.Injective2.uncurry
image2_inter_subset_left πŸ“–mathematicalβ€”Set
instHasSubset
image2
instInter
β€”Monotone.map_inf_le
image2_subset_right
image2_inter_subset_right πŸ“–mathematicalβ€”Set
instHasSubset
image2
instInter
β€”Monotone.map_inf_le
image2_subset_left
image2_inter_union_subset πŸ“–mathematicalβ€”Set
instHasSubset
image2
instInter
instUnion
β€”inter_comm
HasSubset.Subset.trans
instIsTransSubset
image2_inter_union_subset_union
union_subset
Eq.subset
instReflSubset
image2_comm
Subset.rfl
image2_inter_union_subset_union πŸ“–mathematicalβ€”Set
instHasSubset
image2
instInter
instUnion
β€”image2_union_right
union_subset_union
image2_subset_right
inter_subset_left
inter_subset_right
image2_left πŸ“–mathematicalNonemptyimage2β€”nonempty_def
image2_left_comm πŸ“–mathematicalβ€”image2β€”image2_swap
image2_assoc
image2_left_identity πŸ“–mathematicalβ€”image2
Set
instSingletonSet
β€”image2_singleton_left
image_id
image2_mk_eq_prod πŸ“–mathematicalβ€”image2
SProd.sprod
Set
instSProd
β€”ext
image2_nonempty_iff πŸ“–mathematicalβ€”Nonempty
image2
β€”Nonempty.image2
image2_range πŸ“–mathematicalβ€”image2
range
β€”image2_image_left
image2_image_right
univ_prod_univ
image2_right πŸ“–mathematicalNonemptyimage2β€”nonempty_def
image2_right_comm πŸ“–mathematicalβ€”image2β€”image2_swap
image2_assoc
image2_right_identity πŸ“–mathematicalβ€”image2
Set
instSingletonSet
β€”image2_singleton_right
image_id'
image2_singleton πŸ“–mathematicalβ€”image2
Set
instSingletonSet
β€”image2_singleton_right
image_singleton
image2_singleton_left πŸ“–mathematicalβ€”image2
Set
instSingletonSet
image
β€”ext
image2_singleton_right πŸ“–mathematicalβ€”image2
Set
instSingletonSet
image
β€”ext
image2_subset πŸ“–mathematicalSet
instHasSubset
image2β€”mem_image2_of_mem
image2_subset_iff πŸ“–mathematicalβ€”Set
instHasSubset
image2
instMembership
β€”forall_mem_image2
image2_subset_iff_left πŸ“–mathematicalβ€”Set
instHasSubset
image2
image
β€”β€”
image2_subset_iff_right πŸ“–mathematicalβ€”Set
instHasSubset
image2
image
β€”forallβ‚‚_swap
image2_subset_left πŸ“–mathematicalSet
instHasSubset
image2β€”image2_subset
Subset.rfl
image2_subset_right πŸ“–mathematicalSet
instHasSubset
image2β€”image2_subset
Subset.rfl
image2_swap πŸ“–mathematicalβ€”image2β€”β€”
image2_union_inter_subset πŸ“–mathematicalβ€”Set
instHasSubset
image2
instUnion
instInter
β€”image2_comm
image2_inter_union_subset
image2_union_inter_subset_union πŸ“–mathematicalβ€”Set
instHasSubset
image2
instUnion
instInter
β€”image2_union_left
union_subset_union
image2_subset_left
inter_subset_left
inter_subset_right
image2_union_left πŸ“–mathematicalβ€”image2
Set
instUnion
β€”union_prod
image_union
image2_union_right πŸ“–mathematicalβ€”image2
Set
instUnion
β€”image2_swap
image2_union_left
image_image2 πŸ“–mathematicalβ€”image
image2
β€”image_image
image_image2_antidistrib πŸ“–mathematicalβ€”image
image2
β€”image2_swap
image_image2_distrib
image_image2_antidistrib_left πŸ“–mathematicalβ€”image
image2
β€”image_image2_antidistrib
image_id'
image_image2_antidistrib_right πŸ“–mathematicalβ€”image
image2
β€”image_image2_antidistrib
image_id'
image_image2_distrib πŸ“–mathematicalβ€”image
image2
β€”image_image2
image2_image_left
image2_image_right
image2_congr
image_image2_distrib_left πŸ“–mathematicalβ€”image
image2
β€”image_image2_distrib
image_id'
image_image2_distrib_right πŸ“–mathematicalβ€”image
image2
β€”image_image2_distrib
image_id'
image_image2_right_anticomm πŸ“–mathematicalβ€”image2
image
β€”image_image2_antidistrib_right
image_image2_right_comm πŸ“–mathematicalβ€”image2
image
β€”image_image2_distrib_right
image_prod πŸ“–mathematicalβ€”image
SProd.sprod
Set
instSProd
image2
β€”ext
image_subset_image2_left πŸ“–mathematicalSet
instMembership
instHasSubset
image
image2
β€”forall_mem_image
mem_image2_of_mem
image_subset_image2_right πŸ“–mathematicalSet
instMembership
instHasSubset
image
image2
β€”forall_mem_image
mem_image2_of_mem
image_uncurry_prod πŸ“–mathematicalβ€”image
SProd.sprod
Set
instSProd
image2
β€”image_prod
mem_image2_iff πŸ“–mathematicalFunction.Injective2Set
instMembership
image2
β€”mem_image2_of_mem
subset_image2_diff_left πŸ“–mathematicalβ€”Set
instHasSubset
instSDiff
image2
β€”β€”
subset_image2_diff_right πŸ“–mathematicalβ€”Set
instHasSubset
instSDiff
image2
β€”β€”

Set.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
image2 πŸ“–mathematicalSet.NonemptySet.image2β€”Set.mem_image2_of_mem
of_image2_left πŸ“–β€”Set.Nonempty
Set.image2
β€”β€”Set.image2_nonempty_iff
of_image2_right πŸ“–β€”Set.Nonempty
Set.image2
β€”β€”Set.image2_nonempty_iff

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
image2 πŸ“–mathematicalSet.SubsingletonSet.image2β€”Set.image_prod
image
prod

---

← Back to Index