Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Data/Set/Pairwise/Basic.lean

Statistics

MetricCount
DefinitionsPairwiseDisjoint
1
Theoremsdisjoint_extend_bot, pairwiseDisjoint, range_pairwise, set_of_subtype, pairwiseDisjoint_image, pairwise_image, pairwise_ne, pairwise_eq_iff_exists_eq, pairwise_iff_exists_forall, image, insert, insert_of_notMem, insert_of_symmetric, mono, mono', of_refl, subsingleton, subtype, elim, elim', elim_set, eq_of_le, eq_or_disjoint, image_of_le, insert, insert_of_notMem, mono, mono_on, prod, range, subset, union, pairwise, exists_lt_mem_inter_of_not_pairwiseDisjoint, exists_ne_mem_inter_of_not_pairwiseDisjoint, injOn_iff_pairwise_ne, pairwiseDisjoint_empty, pairwiseDisjoint_fiber, pairwiseDisjoint_image_left_iff, pairwiseDisjoint_image_right_iff, pairwiseDisjoint_insert, pairwiseDisjoint_insert_of_notMem, pairwiseDisjoint_pi, pairwiseDisjoint_range_iff, pairwiseDisjoint_range_singleton, pairwiseDisjoint_singleton, pairwiseDisjoint_singleton_iff_injOn, pairwiseDisjoint_union, pairwise_bot_iff, pairwise_empty, pairwise_eq_iff_exists_eq, pairwise_iff_exists_forall, pairwise_iff_of_refl, pairwise_insert, pairwise_insert_of_notMem, pairwise_insert_of_symmetric, pairwise_insert_of_symmetric_of_notMem, pairwise_pair, pairwise_pair_of_symmetric, pairwise_singleton, pairwise_top, pairwise_union, pairwise_union_of_symmetric, pairwise_univ, pairwise_on, exists_lt_mem_inter_of_not_pairwise_disjoint, exists_ne_mem_inter_of_not_pairwise_disjoint, pairwise_disjoint_fiber, pairwise_disjoint_mono, pairwise_disjoint_on, pairwise_disjoint_on_bool, pairwise_ne_iff_injective, pairwise_not_eq_iff_injective, pairwise_on_bool, pairwise_subtype_iff_pairwise_set, subsingleton_setOf_mem_iff_pairwise_disjoint
76
Total77

Pairwise

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_extend_bot πŸ“–mathematicalPairwise
Function.onFun
Disjoint
Function.FactorsThrough
Function.extend
Bot.bot
Pi.instBotForall
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
β€”em
Function.FactorsThrough.extend_apply
Function.extend_apply'
disjoint_bot_right
disjoint_bot_left
pairwiseDisjoint πŸ“–mathematicalPairwise
Function.onFun
Disjoint
Set.PairwiseDisjointβ€”set_pairwise
range_pairwise πŸ“–mathematicalPairwise
Function.onFun
Set.Pairwise
Set.range
β€”Set.Pairwise.image
Set.pairwise_univ
Set.image_univ
set_of_subtype πŸ“–mathematicalPairwise
Set.Elem
Set
Set.instMembership
Set.Pairwiseβ€”pairwise_subtype_iff_pairwise_set

Set

Definitions

NameCategoryTheorems
PairwiseDisjoint πŸ“–MathDef
90 mathmath: Finite.t2_separation, pairwiseDisjoint_range_iff, Finset.pairwiseDisjoint_singleton_iff_injOn, pairwiseDisjoint_pair_insert, Finset.product_self_eq_disjiUnion_perm_aux, MeasureTheory.IsSetSemiring.pairwiseDisjoint_insert_disjointOfDiff, Finset.pairwiseDisjoint_range_singleton, Finset.pairwiseDisjoint_coe, AddAction.orbit.pairwiseDisjoint, Topology.RelCWComplex.pairwiseDisjoint', OrderedFinpartition.disjoint, exists_dist_slope_lt_pairwiseDisjoint_hasSum, Finpartition.disjoint, Besicovitch.exist_disjoint_covering_families, sSupIndep.pairwiseDisjoint, MeasureTheory.IsSetSemiring.disjointOfUnion_props, Partition.pairwiseDisjoint, Subgroup.leftCoset_cover_filter_FiniteIndex_aux, pairwiseDisjoint_insert_of_notMem, Subgroup.pairwiseDisjoint_leftCoset_cover_const_of_index_eq, Finset.pairwiseDisjoint_smul_iff, pairwiseDisjoint_filter, Finset.supIndep_iff_pairwiseDisjoint, Besicovitch.exist_finset_disjoint_balls_large_measure, MeasureTheory.IsSetSemiring.exists_disjoint_finset_diff_eq, Besicovitch.exists_disjoint_closedBall_covering_ae_of_finiteMeasure_aux, AddAction.IsBlock.pairwiseDisjoint_range_vadd, Setoid.eqv_classes_disjoint, pairwiseDisjoint_sUnion, Finset.pairwiseDisjoint_iff, pairwiseDisjoint_prod_left, IsChain.pairwiseDisjoint_iUnionβ‚‚, IsChain.pairwiseDisjoint_sUnion, Topology.CWComplex.pairwiseDisjoint', MeasureTheory.IsSetSemiring.pairwiseDisjoint_disjointOfUnion_of_mem, Vitali.exists_disjoint_subfamily_covering_enlargement_closedBall, MeasureTheory.IsSetSemiring.pairwiseDisjoint_biUnion_disjointOfUnion, pairwiseDisjoint_empty, MeasureTheory.IsSetSemiring.diff_eq_sUnion', Finset.pairwiseDisjoint_map_sigmaMk, Subgroup.IsComplement.pairwiseDisjoint_smul, Finset.intervalGapsWithin_pairwiseDisjoint_Ioc, SimpleGraph.EdgeLabeling.pairwiseDisjoint_univ_labelGraph, pairwiseDisjoint_nhds, VitaliFamily.FineSubfamilyOn.exists_disjoint_covering_ae, VitaliFamily.covering, Vitali.exists_disjoint_subfamily_covering_enlargement, InjOn.pairwiseDisjoint_image, AddSubgroup.pairwiseDisjoint_leftCoset_cover_const_of_index_eq, AddAction.isBlock_iff_pairwiseDisjoint_range_vadd, Vitali.exists_disjoint_covering_ae, Finset.pairwiseDisjoint_piAntidiag_map_addRightEmbedding, Besicovitch.exists_disjoint_closedBall_covering_ae, AddSubgroup.IsComplement.pairwiseDisjoint_vadd, List.pairwiseDisjoint_consFixedLengthDigits, Finset.pairwiseDisjoint_vadd_iff, MulAction.orbit.pairwiseDisjoint, RootedTree.subtrees_disjoint, pairwiseDisjoint_range_singleton, Subgroup.pairwiseDisjoint_leftCoset_cover_of_sum_inv_index_eq_one, pairwiseDisjoint_vadd_iff, List.pairwiseDisjoint_iff_coe_toFinset_pairwise_disjoint, Finset.SupIndep.pairwiseDisjoint, MulAction.IsBlock.pairwiseDisjoint_range_smul, MulAction.isBlock_iff_pairwiseDisjoint_range_smul, MeasureTheory.IsSetSemiring.pairwiseDisjoint_disjointOfUnion, pairwiseDisjoint_insert, pairwiseDisjoint_iff, pairwiseDisjoint_fiber, AddSubgroup.leftCoset_cover_filter_FiniteIndex_aux, pairwiseDisjoint_image_right_iff, MeasureTheory.IsSetSemiring.pairwiseDisjoint_disjointOfDiff, Setoid.IsPartition.pairwiseDisjoint, sSupIndep_iff_pairwiseDisjoint, pairwiseDisjoint_smul_iff, RealRMK.range_cut_partition, pairwiseDisjoint_image_left_iff, Besicovitch.exists_disjoint_closedBall_covering_ae_aux, Topology.RelCWComplex.pairwiseDisjoint, pairwiseDisjoint_union, pairwiseDisjoint_iUnion, VitaliFamily.FineSubfamilyOn.covering_disjoint, Finset.pairwiseDisjoint_pair_insert, pairwiseDisjoint_singleton, Pairwise.pairwiseDisjoint, Finset.pairwiseDisjoint_slice, Vitali.exists_disjoint_covering_ae', AddSubgroup.pairwiseDisjoint_leftCoset_cover_of_sum_neg_index_eq_zero, MeasureTheory.IsSetSemiring.pairwiseDisjoint_disjointOfDiffUnion, pairwiseDisjoint_singleton_iff_injOn

Theorems

NameKindAssumesProvesValidatesDepends On
exists_lt_mem_inter_of_not_pairwiseDisjoint πŸ“–mathematicalPairwiseDisjoint
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
instMembership
Preorder.toLT
PartialOrder.toPreorder
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instInter
β€”exists_ne_mem_inter_of_not_pairwiseDisjoint
lt_or_lt_iff_ne
exists_ne_mem_inter_of_not_pairwiseDisjoint πŸ“–mathematicalPairwiseDisjoint
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
instMembership
instInter
β€”nonempty_iff_ne_empty
bot_eq_empty
le_bot_iff
injOn_iff_pairwise_ne πŸ“–mathematicalβ€”InjOn
Pairwise
β€”β€”
pairwiseDisjoint_empty πŸ“–mathematicalβ€”PairwiseDisjoint
Set
instEmptyCollection
β€”pairwise_empty
pairwiseDisjoint_fiber πŸ“–mathematicalβ€”PairwiseDisjoint
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
preimage
instSingletonSet
β€”disjoint_iff_inf_le
pairwiseDisjoint_image_left_iff πŸ“–mathematicalβ€”PairwiseDisjoint
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
image
InjOn
SProd.sprod
instSProd
β€”PairwiseDisjoint.elim
not_disjoint_iff
mem_image_of_mem
disjoint_iff_inf_le
mk_mem_prod
pairwiseDisjoint_image_right_iff πŸ“–mathematicalβ€”PairwiseDisjoint
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
image
InjOn
SProd.sprod
instSProd
β€”PairwiseDisjoint.elim
not_disjoint_iff
mem_image_of_mem
disjoint_iff_inf_le
mk_mem_prod
pairwiseDisjoint_insert πŸ“–mathematicalβ€”PairwiseDisjoint
Set
instInsert
Disjoint
β€”pairwise_insert_of_symmetric
Symmetric.comap
symmetric_disjoint
pairwiseDisjoint_insert_of_notMem πŸ“–mathematicalSet
instMembership
PairwiseDisjoint
instInsert
Disjoint
β€”pairwise_insert_of_symmetric_of_notMem
Symmetric.comap
symmetric_disjoint
pairwiseDisjoint_pi πŸ“–mathematicalPairwiseDisjoint
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
pi
univ
β€”disjoint_left
PairwiseDisjoint.elim_set
pairwiseDisjoint_range_iff πŸ“–mathematicalβ€”PairwiseDisjoint
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
range
Disjoint
β€”β€”
pairwiseDisjoint_range_singleton πŸ“–mathematicalβ€”PairwiseDisjoint
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
range
instSingletonSet
β€”Pairwise.range_pairwise
disjoint_singleton
pairwiseDisjoint_singleton πŸ“–mathematicalβ€”PairwiseDisjoint
Set
instSingletonSet
β€”pairwise_singleton
pairwiseDisjoint_singleton_iff_injOn πŸ“–mathematicalβ€”PairwiseDisjoint
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
instSingletonSet
InjOn
β€”β€”
pairwiseDisjoint_union πŸ“–mathematicalβ€”PairwiseDisjoint
Set
instUnion
Disjoint
β€”pairwise_union_of_symmetric
Symmetric.comap
symmetric_disjoint
pairwise_bot_iff πŸ“–mathematicalβ€”Pairwise
Bot.bot
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
Subsingleton
β€”Pairwise.eq
Subsingleton.pairwise
pairwise_empty πŸ“–mathematicalβ€”Pairwise
Set
instEmptyCollection
β€”Subsingleton.pairwise
subsingleton_empty
pairwise_eq_iff_exists_eq πŸ“–mathematicalβ€”Pairwiseβ€”pairwise_iff_exists_forall
eq_isEquiv
pairwise_iff_exists_forall πŸ“–mathematicalβ€”Pairwise
Function.onFun
β€”eq_empty_or_nonempty
instIsEmptyFalse
Nonempty.pairwise_iff_exists_forall
pairwise_iff_of_refl πŸ“–mathematicalβ€”Pairwiseβ€”of_eq
pairwise_insert πŸ“–mathematicalβ€”Pairwise
Set
instInsert
β€”β€”
pairwise_insert_of_notMem πŸ“–mathematicalSet
instMembership
Pairwise
instInsert
β€”pairwise_insert
pairwise_insert_of_symmetric πŸ“–mathematicalSymmetricPairwise
Set
instInsert
β€”Symmetric.iff
pairwise_insert_of_symmetric_of_notMem πŸ“–mathematicalSymmetric
Set
instMembership
Pairwise
instInsert
β€”pairwise_insert_of_notMem
Symmetric.iff
pairwise_pair πŸ“–mathematicalβ€”Pairwise
Set
instInsert
instSingletonSet
β€”β€”
pairwise_pair_of_symmetric πŸ“–mathematicalSymmetricPairwise
Set
instInsert
instSingletonSet
β€”pairwise_insert_of_symmetric
pairwise_singleton πŸ“–mathematicalβ€”Pairwise
Set
instSingletonSet
β€”Subsingleton.pairwise
subsingleton_singleton
pairwise_top πŸ“–mathematicalβ€”Pairwise
Top.top
Pi.instTopForall
BooleanAlgebra.toTop
Prop.instBooleanAlgebra
β€”pairwise_of_forall
pairwise_union πŸ“–mathematicalβ€”Pairwise
Set
instUnion
β€”β€”
pairwise_union_of_symmetric πŸ“–mathematicalSymmetricPairwise
Set
instUnion
β€”pairwise_union
Symmetric.iff
pairwise_univ πŸ“–mathematicalβ€”Pairwise
univ
Pairwise
β€”β€”

Set.InjOn

Theorems

NameKindAssumesProvesValidatesDepends On
pairwiseDisjoint_image πŸ“–mathematicalSet.InjOnSet.PairwiseDisjoint
Set.image
β€”pairwise_image
pairwise_image πŸ“–mathematicalSet.InjOnSet.Pairwise
Set.image
Function.onFun
β€”eq_iff
pairwise_ne πŸ“–mathematicalSet.InjOnSet.Pairwiseβ€”Set.injOn_iff_pairwise_ne

Set.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
pairwise_eq_iff_exists_eq πŸ“–mathematicalSet.NonemptySet.Pairwiseβ€”pairwise_iff_exists_forall
eq_isEquiv
pairwise_iff_exists_forall πŸ“–mathematicalSet.NonemptySet.Pairwise
Function.onFun
β€”eq_or_ne
IsPreorder.toRefl
IsEquiv.toIsPreorder
IsTrans.trans
IsPreorder.toIsTrans
symm
IsEquiv.toSymm

Set.Pairwise

Theorems

NameKindAssumesProvesValidatesDepends On
image πŸ“–mathematicalSet.Pairwise
Function.onFun
Set.imageβ€”Set.forall_mem_image
insert πŸ“–mathematicalSet.PairwiseSet
Set.instInsert
β€”Set.pairwise_insert
insert_of_notMem πŸ“–mathematicalSet
Set.instMembership
Set.Pairwise
Set.instInsertβ€”Set.pairwise_insert_of_notMem
insert_of_symmetric πŸ“–mathematicalSet.Pairwise
Symmetric
Set
Set.instInsert
β€”Set.pairwise_insert_of_symmetric
mono πŸ“–β€”Set
Set.instHasSubset
Set.Pairwise
β€”β€”β€”
mono' πŸ“–β€”Pi.hasLe
Prop.le
Set.Pairwise
β€”β€”imp
of_refl πŸ“–β€”Set.Pairwise
Set
Set.instMembership
β€”β€”Set.pairwise_iff_of_refl
subsingleton πŸ“–mathematicalSet.Pairwise
Bot.bot
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
Set.Subsingletonβ€”Set.pairwise_bot_iff
subtype πŸ“–mathematicalSet.PairwisePairwise
Set.Elem
Set
Set.instMembership
β€”pairwise_subtype_iff_pairwise_set

Set.PairwiseDisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
elim πŸ“–β€”Set.PairwiseDisjoint
Set
Set.instMembership
Disjoint
β€”β€”Set.Pairwise.eq
elim' πŸ“–β€”Set.PairwiseDisjoint
SemilatticeInf.toPartialOrder
Set
Set.instMembership
β€”β€”elim
Disjoint.eq_bot
elim_set πŸ“–β€”Set.PairwiseDisjoint
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
Set.instMembership
β€”β€”elim
Set.not_disjoint_iff
eq_of_le πŸ“–β€”Set.PairwiseDisjoint
SemilatticeInf.toPartialOrder
Set
Set.instMembership
Preorder.toLE
PartialOrder.toPreorder
β€”β€”elim'
inf_of_le_left
eq_or_disjoint πŸ“–mathematicalSet.PairwiseDisjoint
Set
Set.instMembership
Disjointβ€”elim
image_of_le πŸ“–mathematicalSet.PairwiseDisjoint
Pi.hasLe
Preorder.toLE
PartialOrder.toPreorder
Set.imageβ€”Disjoint.mono
insert πŸ“–mathematicalSet.PairwiseDisjoint
Disjoint
Set
Set.instInsert
β€”Set.pairwiseDisjoint_insert
insert_of_notMem πŸ“–mathematicalSet.PairwiseDisjoint
Set
Set.instMembership
Disjoint
Set.instInsertβ€”Set.pairwiseDisjoint_insert_of_notMem
mono πŸ“–β€”Set.PairwiseDisjoint
Pi.hasLe
Preorder.toLE
PartialOrder.toPreorder
β€”β€”mono_on
mono_on πŸ“–β€”Set.PairwiseDisjoint
Preorder.toLE
PartialOrder.toPreorder
β€”β€”Disjoint.mono
prod πŸ“–mathematicalSet.PairwiseDisjoint
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
SProd.sprod
Set.instSProd
β€”Set.disjoint_left
elim_set
range πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
Set
Set.instMembership
Set.PairwiseDisjoint
Set.range
Set.Elem
β€”Disjoint.mono
subset πŸ“–β€”Set.PairwiseDisjoint
Set
Set.instHasSubset
β€”β€”Set.Pairwise.mono
union πŸ“–mathematicalSet.PairwiseDisjoint
Disjoint
Set
Set.instUnion
β€”Set.pairwiseDisjoint_union

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
pairwise πŸ“–mathematicalSet.SubsingletonSet.Pairwiseβ€”β€”

Symmetric

Theorems

NameKindAssumesProvesValidatesDepends On
pairwise_on πŸ“–mathematicalSymmetricPairwise
Function.onFun
β€”LT.lt.ne
Ne.lt_or_gt

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_lt_mem_inter_of_not_pairwise_disjoint πŸ“–mathematicalPairwise
Function.onFun
Set
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
Preorder.toLT
PartialOrder.toPreorder
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.instMembership
Set.instInter
β€”Set.exists_lt_mem_inter_of_not_pairwiseDisjoint
Set.pairwise_univ
exists_ne_mem_inter_of_not_pairwise_disjoint πŸ“–mathematicalPairwise
Function.onFun
Set
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
Set.instMembership
Set.instInter
β€”Set.exists_ne_mem_inter_of_not_pairwiseDisjoint
Set.pairwise_univ
pairwise_disjoint_fiber πŸ“–mathematicalβ€”Pairwise
Function.onFun
Set
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
Set.preimage
Set.instSingletonSet
β€”Set.pairwise_univ
Set.pairwiseDisjoint_fiber
pairwise_disjoint_mono πŸ“–β€”Pairwise
Function.onFun
Disjoint
Pi.hasLe
Preorder.toLE
PartialOrder.toPreorder
β€”β€”Pairwise.mono
Disjoint.mono
pairwise_disjoint_on πŸ“–mathematicalβ€”Pairwise
Function.onFun
Disjoint
β€”Symmetric.pairwise_on
Disjoint.symm
pairwise_disjoint_on_bool πŸ“–mathematicalβ€”Pairwise
Function.onFun
Disjoint
β€”pairwise_on_bool
Disjoint.symm
pairwise_ne_iff_injective πŸ“–mathematicalβ€”Pairwiseβ€”β€”
pairwise_not_eq_iff_injective πŸ“–mathematicalβ€”Pairwiseβ€”β€”
pairwise_on_bool πŸ“–mathematicalSymmetricPairwise
Function.onFun
β€”instIsEmptyFalse
pairwise_subtype_iff_pairwise_set πŸ“–mathematicalβ€”Pairwise
Set.Elem
Set
Set.instMembership
Set.Pairwise
β€”β€”
subsingleton_setOf_mem_iff_pairwise_disjoint πŸ“–mathematicalβ€”Set.Subsingleton
setOf
Set
Set.instMembership
Pairwise
Function.onFun
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
β€”Set.disjoint_left
by_contra

---

← Back to Index