Documentation Verification Report

Piecewise

πŸ“ Source: Mathlib/Data/Set/Piecewise.lean

Statistics

MetricCount
Definitions0
Theoremspiecewise_ite, piecewise_ite', piecewise_ite, apply_piecewise, apply_piecewiseβ‚‚, eqOn_piecewise, injective_piecewise_iff, le_piecewise, pi_piecewise, piecewise_comp, piecewise_compl, piecewise_empty, piecewise_eqOn, piecewise_eqOn_compl, piecewise_eq_of_mem, piecewise_eq_of_notMem, piecewise_insert, piecewise_insert_of_ne, piecewise_insert_self, piecewise_le, piecewise_mem_pi, piecewise_mono, piecewise_op, piecewise_opβ‚‚, piecewise_preimage, piecewise_range_comp, piecewise_same, piecewise_singleton, piecewise_univ, range_piecewise, univ_pi_piecewise, univ_pi_piecewise_univ
32
Total32

Set

Theorems

NameKindAssumesProvesValidatesDepends On
apply_piecewise πŸ“–mathematicalβ€”piecewiseβ€”piecewise_eq_of_mem
piecewise_eq_of_notMem
apply_piecewiseβ‚‚ πŸ“–mathematicalβ€”piecewiseβ€”piecewise_eq_of_mem
piecewise_eq_of_notMem
eqOn_piecewise πŸ“–mathematicalβ€”EqOn
piecewise
Set
instInter
Compl.compl
instCompl
β€”piecewise_eq_of_mem
instIsEmptyFalse
piecewise_eq_of_notMem
injective_piecewise_iff πŸ“–mathematicalβ€”piecewise
InjOn
Compl.compl
Set
instCompl
β€”injOn_univ
union_compl_self
injOn_union
disjoint_compl_right
EqOn.injOn_iff
piecewise_eqOn
piecewise_eqOn_compl
piecewise_eq_of_mem
piecewise_eq_of_notMem
le_piecewise πŸ“–mathematicalPreorder.toLEPi.hasLe
piecewise
β€”piecewise_le
pi_piecewise πŸ“–mathematicalβ€”pi
piecewise
Set
instInter
instSDiff
β€”pi_if
piecewise_comp πŸ“–mathematicalβ€”piecewise
preimage
Set
instMembership
β€”β€”
piecewise_compl πŸ“–mathematicalβ€”piecewise
Compl.compl
Set
instCompl
β€”piecewise_eq_of_notMem
piecewise_eq_of_mem
piecewise_empty πŸ“–mathematicalβ€”piecewise
Set
instEmptyCollection
β€”β€”
piecewise_eqOn πŸ“–mathematicalβ€”EqOn
piecewise
β€”piecewise_eq_of_mem
piecewise_eqOn_compl πŸ“–mathematicalβ€”EqOn
piecewise
Compl.compl
Set
instCompl
β€”piecewise_eq_of_notMem
piecewise_eq_of_mem πŸ“–mathematicalSet
instMembership
piecewiseβ€”β€”
piecewise_eq_of_notMem πŸ“–mathematicalSet
instMembership
piecewiseβ€”β€”
piecewise_insert πŸ“–mathematicalβ€”piecewise
Set
instInsert
Function.update
β€”Function.update_self
Function.update_of_ne
piecewise_insert_of_ne πŸ“–mathematicalβ€”piecewise
Set
instInsert
β€”β€”
piecewise_insert_self πŸ“–mathematicalβ€”piecewise
Set
instInsert
β€”β€”
piecewise_le πŸ“–mathematicalPreorder.toLEPi.hasLe
piecewise
β€”piecewise_eq_of_mem
piecewise_eq_of_notMem
piecewise_mem_pi πŸ“–mathematicalSet
instMembership
pi
piecewiseβ€”piecewise_eq_of_mem
piecewise_eq_of_notMem
piecewise_mono πŸ“–mathematicalPreorder.toLEPi.hasLe
piecewise
β€”piecewise_le
piecewise_eq_of_mem
piecewise_eq_of_notMem
piecewise_op πŸ“–mathematicalβ€”piecewiseβ€”apply_piecewise
piecewise_opβ‚‚ πŸ“–mathematicalβ€”piecewiseβ€”apply_piecewiseβ‚‚
piecewise_preimage πŸ“–mathematicalβ€”preimage
piecewise
ite
β€”ext
piecewise_eq_of_mem
piecewise_eq_of_notMem
piecewise_range_comp πŸ“–mathematicalβ€”piecewise
range
β€”EqOn.comp_eq
piecewise_eqOn
piecewise_same πŸ“–mathematicalβ€”piecewiseβ€”piecewise_eq_of_mem
piecewise_eq_of_notMem
piecewise_singleton πŸ“–mathematicalβ€”piecewise
Set
instSingletonSet
Function.update
β€”piecewise_eq_of_mem
Function.update_self
piecewise_eq_of_notMem
Function.update_of_ne
piecewise_univ πŸ“–mathematicalβ€”piecewise
univ
β€”β€”
range_piecewise πŸ“–mathematicalβ€”range
piecewise
Set
instUnion
image
Compl.compl
instCompl
β€”ext
piecewise_eq_of_mem
piecewise_eq_of_notMem
univ_pi_piecewise πŸ“–mathematicalβ€”pi
univ
piecewise
Set
instInter
Compl.compl
instCompl
β€”pi_piecewise
univ_inter
compl_eq_univ_diff
univ_pi_piecewise_univ πŸ“–mathematicalβ€”pi
univ
piecewise
Set
β€”pi_piecewise
univ_inter
pi_univ
inter_univ

Set.EqOn

Theorems

NameKindAssumesProvesValidatesDepends On
piecewise_ite πŸ“–mathematicalSet.EqOnSet.piecewise
Set.ite
β€”piecewise_ite'
mono
Set.inter_subset_left
piecewise_ite' πŸ“–mathematicalSet.EqOn
Set
Set.instInter
Compl.compl
Set.instCompl
Set.piecewise
Set.ite
β€”Set.ite_inter_self
Set.ite_inter_compl_self

Set.MapsTo

Theorems

NameKindAssumesProvesValidatesDepends On
piecewise_ite πŸ“–mathematicalSet.MapsTo
Set
Set.instInter
Compl.compl
Set.instCompl
Set.piecewise
Set.ite
β€”union_union
congr
Set.EqOn.mono
Set.inter_subset_right
Set.EqOn.symm
Set.piecewise_eqOn
Set.piecewise_eqOn_compl

---

← Back to Index