Documentation Verification Report

SMulAntidiagonal

📁 Source: Mathlib/Data/Set/SMulAntidiagonal.lean

Statistics

MetricCount
DefinitionssmulAntidiagonal, vaddAntidiagonal
2
Theoremseq_of_fst_eq_fst, eq_of_fst_le_fst_of_snd_le_snd, eq_of_snd_eq_snd, finite_of_isPWO, fst_eq_fst_iff_snd_eq_snd, eq_of_fst_eq_fst, eq_of_fst_le_fst_of_snd_le_snd, eq_of_snd_eq_snd, finite_of_isPWO, fst_eq_fst_iff_snd_eq_snd, mem_smulAntidiagonal, mem_vaddAntidiagonal, smulAntidiagonal_mono_left, smulAntidiagonal_mono_right, vaddAntidiagonal_mono_left, vaddAntidiagonal_mono_right
16
Total18

Set

Definitions

NameCategoryTheorems
smulAntidiagonal 📖CompOp
5 mathmath: smulAntidiagonal_mono_right, smulAntidiagonal_mono_left, mem_smulAntidiagonal, SMulAntidiagonal.finite_of_isPWO, SMulAntidiagonal.fst_eq_fst_iff_snd_eq_snd
vaddAntidiagonal 📖CompOp
6 mathmath: vaddAntidiagonal_mono_left, VAddAntidiagonal.finite_of_isPWO, vaddAntidiagonal_mono_right, mem_vaddAntidiagonal, Finsupp.finite_vaddAntidiagonal, VAddAntidiagonal.fst_eq_fst_iff_snd_eq_snd

Theorems

NameKindAssumesProvesValidatesDepends On
mem_smulAntidiagonal 📖mathematicalSet
instMembership
smulAntidiagonal
mem_vaddAntidiagonal 📖mathematicalSet
instMembership
vaddAntidiagonal
HVAdd.hVAdd
instHVAdd
smulAntidiagonal_mono_left 📖mathematicalSet
instHasSubset
smulAntidiagonal
smulAntidiagonal_mono_right 📖mathematicalSet
instHasSubset
smulAntidiagonal
vaddAntidiagonal_mono_left 📖mathematicalSet
instHasSubset
vaddAntidiagonal
vaddAntidiagonal_mono_right 📖mathematicalSet
instHasSubset
vaddAntidiagonal

Set.SMulAntidiagonal

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_fst_eq_fst 📖Set
Set.instMembership
Set.smulAntidiagonal
fst_eq_fst_iff_snd_eq_snd
eq_of_fst_le_fst_of_snd_le_snd 📖Preorder.toLE
PartialOrder.toPreorder
Set
Set.instMembership
Set.smulAntidiagonal
eq_of_fst_eq_fst
instIsCancelSMulOfIsOrderedCancelSMul
LE.le.eq_of_not_lt
LT.lt.ne
SMul.smul_lt_smul_of_lt_of_le
Set.mem_smulAntidiagonal
eq_of_snd_eq_snd 📖Set
Set.instMembership
Set.smulAntidiagonal
fst_eq_fst_iff_snd_eq_snd
finite_of_isPWO 📖mathematicalSet.IsPWO
PartialOrder.toPreorder
Set.Finite
Set.smulAntidiagonal
Set.mem_smulAntidiagonal
Set.PartiallyWellOrderedOn.exists_monotone_subseq
Order.Preimage.instIsPreorder
instIsPreorderLe
LT.lt.ne
RelEmbedding.injective
Function.Embedding.injective
eq_of_fst_le_fst_of_snd_le_snd
LT.lt.le
fst_eq_fst_iff_snd_eq_snd 📖mathematicalSet
Set.instMembership
Set.smulAntidiagonal
IsCancelSMul.left_cancel
IsCancelSMul.right_cancel

Set.VAddAntidiagonal

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_fst_eq_fst 📖Set
Set.instMembership
Set.vaddAntidiagonal
fst_eq_fst_iff_snd_eq_snd
eq_of_fst_le_fst_of_snd_le_snd 📖Preorder.toLE
PartialOrder.toPreorder
Set
Set.instMembership
Set.vaddAntidiagonal
eq_of_fst_eq_fst
instIsCancelVAddOfIsOrderedCancelVAdd
LE.le.eq_of_not_lt
LT.lt.ne
VAdd.vadd_lt_vadd_of_lt_of_le
Set.mem_vaddAntidiagonal
eq_of_snd_eq_snd 📖Set
Set.instMembership
Set.vaddAntidiagonal
fst_eq_fst_iff_snd_eq_snd
finite_of_isPWO 📖mathematicalSet.IsPWO
PartialOrder.toPreorder
Set.Finite
Set.vaddAntidiagonal
Set.mem_vaddAntidiagonal
Set.not_finite
Set.PartiallyWellOrderedOn.exists_monotone_subseq
Order.Preimage.instIsPreorder
instIsPreorderLe
LT.lt.ne
RelEmbedding.injective
Function.Embedding.injective
eq_of_fst_le_fst_of_snd_le_snd
LT.lt.le
fst_eq_fst_iff_snd_eq_snd 📖mathematicalSet
Set.instMembership
Set.vaddAntidiagonal
IsCancelVAdd.left_cancel
IsCancelVAdd.right_cancel

---

← Back to Index