Documentation Verification Report

Sups

πŸ“ Source: Mathlib/Data/Set/Sups.lean

Statistics

MetricCount
DefinitionsHasInfs, infs, HasSups, sups, hasInfs, hasSups, «term_⊻_», «term_⊼_»
8
Theoremsinfs, of_infs_left, of_infs_right, of_sups_left, of_sups_right, sups, empty_infs, empty_sups, forall_infs_iff, forall_sups_iff, iUnion_image_inf_left, iUnion_image_inf_right, iUnion_image_sup_left, iUnion_image_sup_right, image_inf_prod, image_infs, image_subset_infs_left, image_subset_infs_right, image_subset_sups_left, image_subset_sups_right, image_sup_prod, image_sups, inf_mem_infs, infs_assoc, infs_comm, infs_empty, infs_eq_empty, infs_infs_infs_comm, infs_inter_subset_left, infs_inter_subset_right, infs_left_comm, infs_nonempty, infs_right_comm, infs_self, infs_self_subset, infs_singleton, infs_subset, infs_subset_iff, infs_subset_left, infs_subset_right, infs_sups_subset_left, infs_sups_subset_right, infs_union_left, infs_union_right, mem_infs, mem_sups, sep_infs_le, sep_sups_le, singleton_infs, singleton_infs_singleton, singleton_sups, singleton_sups_singleton, subset_infs_self, subset_sups_self, sup_mem_sups, sups_assoc, sups_comm, sups_empty, sups_eq_empty, sups_eq_self, sups_infs_subset_left, sups_infs_subset_right, sups_inter_subset_left, sups_inter_subset_right, sups_left_comm, sups_nonempty, sups_right_comm, sups_singleton, sups_subset, sups_subset_iff, sups_subset_left, sups_subset_right, sups_subset_self, sups_sups_sups_comm, sups_union_left, sups_union_right, lowerClosure_infs, upperClosure_sups
78
Total86

HasInfs

Definitions

NameCategoryTheorems
infs πŸ“–CompOp
96 mathmath: Set.image_subset_infs_left, Finset.image_subset_infs_left, Finset.univ_infs_univ, Finset.infs_nonempty, Set.infs_comm, Finset.truncatedSup_infs, Finset.coe_infs, lowerClosure_infs, Finset.infs_comm, Set.infs_sups_subset_right, Set.mem_infs, Set.infs_subset_right, Set.infs_union_right, Set.subset_infs_self, Finset.inter_mem_infs, Set.infs_infs_infs_comm, Set.image_infs, AhlswedeZhang.supSum_union_add_supSum_infs, Finset.sups_infs_subset_left, Set.infs_assoc, Set.infs_self_subset, Finset.infs_sups_subset_right, Finset.powerset_infs_powerset_self, Set.infs_singleton, Finset.singleton_infs, Finset.infs_infs_infs_comm, Set.infs_subset_iff, Set.sups_infs_subset_left, Finset.infs_subset_left, Set.infs_subset_left, Set.sep_infs_le, Set.singleton_infs_singleton, Finset.filter_infs_le, Finset.diffs_compls_eq_infs, Finset.infs_eq_empty, Finset.empty_infs, Finset.infs_self, Finset.card_infs_le, Set.Nonempty.infs, Finset.infs_left_comm, Set.infs_self, Finset.sups_infs_subset_right, Finset.singleton_infs_singleton, Set.infs_sups_subset_left, Finset.compls_sups, Set.infs_eq_empty, Finset.image_infs, Finset.image_subset_infs_right, Finset.compls_infs, Finset.powerset_inter, Finset.infs_singleton, Finset.biUnion_image_inf_right, Set.inf_mem_infs, Finset.le_card_infs_mul_card_sups, Finset.infs_compls_eq_diffs, Finset.infs_union_right, Finset.infs_right_comm, Finset.compls_infs_eq_diffs, Finset.infs_assoc, Set.empty_infs, Finset.card_infs_iff, Finset.infs_empty, Set.sups_infs_subset_right, Finset.map_infs, collapse_modular, Set.singleton_infs, Finset.mem_infs, Finset.Nonempty.infs, Finset.infs_sups_subset_left, Finset.infs_self_subset, Set.image_subset_infs_right, Finset.truncatedSup_infs_of_notMem, Set.infs_empty, Finset.infs_subset, Set.infs_nonempty, Finset.infs_inter_subset_left, Set.infs_subset, Set.infs_union_left, Finset.biUnion_image_inf_left, Set.infs_inter_subset_left, Set.infs_right_comm, Finset.infs_subset_right, Finset.infs_subset_iff, Finset.infs_inter_subset_right, Finset.inf_mem_infs, four_functions_theorem, Finset.infs_union_left, Set.infs_inter_subset_right, Finset.subset_infs_self, Set.iUnion_image_inf_left, Finset.four_functions_theorem, Finset.card_truncatedSup_union_add_card_truncatedSup_infs, Set.infs_left_comm, Set.iUnion_image_inf_right, Set.image_inf_prod, Finset.image_inf_product

HasSups

Definitions

NameCategoryTheorems
sups πŸ“–CompOp
94 mathmath: Set.sups_nonempty, Set.mem_sups, Set.infs_sups_subset_right, Set.sups_subset_right, Set.sup_mem_sups, Set.singleton_sups_singleton, Set.subset_sups_self, upperClosure_sups, Set.sups_assoc, Finset.sups_inter_subset_right, Set.sups_subset_left, Set.sups_right_comm, Finset.powerset_sups_powerset_self, Set.sups_union_left, Finset.card_sups_iff, Finset.sups_infs_subset_left, Finset.univ_sups_univ, Finset.singleton_sups_singleton, Finset.image_subset_sups_left, Finset.infs_sups_subset_right, Finset.sups_singleton, Finset.sups_assoc, Set.sups_comm, Set.sups_inter_subset_right, Set.image_subset_sups_right, Set.sups_left_comm, Set.Nonempty.sups, Finset.sups_subset_right, Finset.image_subset_sups_right, Set.sups_infs_subset_left, Finset.sups_eq_empty, Finset.sups_empty, Set.sep_sups_le, Finset.coe_sups, Finset.sups_union_right, Finset.union_mem_sups, Set.iUnion_image_sup_right, Finset.sups_right_comm, Set.sups_union_right, Finset.sup_mem_sups, Finset.empty_sups, Finset.sups_union_left, Finset.sups_left_comm, Finset.card_truncatedInf_union_add_card_truncatedInf_sups, Finset.truncatedInf_sups_of_notMem, Finset.sups_infs_subset_right, Finset.sups_subset_self, Set.infs_sups_subset_left, Finset.compls_sups, Finset.sups_nonempty, Set.singleton_sups, Finset.biUnion_image_sup_right, Finset.compls_infs, Finset.filter_sups_le, Finset.image_sup_product, Set.sups_sups_sups_comm, Finset.sups_subset_left, Finset.le_card_infs_mul_card_sups, Finset.biUnion_image_sup_left, Set.sups_singleton, Finset.sups_comm, Finset.map_sups, Set.sups_inter_subset_left, Finset.card_sups_le, Set.image_sups, Finset.sups_sups_sups_comm, Set.sups_eq_self, Finset.sups_subset_iff, Set.empty_sups, Finset.truncatedInf_sups, Set.sups_infs_subset_right, Finset.subset_sups_self, Finset.sups_eq_self, collapse_modular, Set.sups_subset, Finset.singleton_sups, Finset.sups_subset, Finset.Nonempty.sups, Finset.image_sups, Set.image_sup_prod, Finset.powerset_union, Finset.disjSups_subset_sups, Finset.infs_sups_subset_left, Set.sups_subset_self, Finset.sups_inter_subset_left, Set.sups_empty, Set.sups_eq_empty, Finset.mem_sups, four_functions_theorem, AhlswedeZhang.infSum_union_add_infSum_sups, Set.sups_subset_iff, Set.image_subset_sups_left, Finset.four_functions_theorem, Set.iUnion_image_sup_left

Set

Definitions

NameCategoryTheorems
hasInfs πŸ“–CompOp
39 mathmath: image_subset_infs_left, infs_comm, Finset.coe_infs, lowerClosure_infs, infs_sups_subset_right, mem_infs, infs_subset_right, infs_union_right, subset_infs_self, infs_infs_infs_comm, image_infs, infs_assoc, infs_self_subset, infs_singleton, infs_subset_iff, sups_infs_subset_left, infs_subset_left, sep_infs_le, singleton_infs_singleton, Nonempty.infs, infs_self, infs_sups_subset_left, infs_eq_empty, inf_mem_infs, empty_infs, sups_infs_subset_right, singleton_infs, image_subset_infs_right, infs_empty, infs_nonempty, infs_subset, infs_union_left, infs_inter_subset_left, infs_right_comm, infs_inter_subset_right, iUnion_image_inf_left, infs_left_comm, iUnion_image_inf_right, image_inf_prod
hasSups πŸ“–CompOp
39 mathmath: sups_nonempty, mem_sups, infs_sups_subset_right, sups_subset_right, sup_mem_sups, singleton_sups_singleton, subset_sups_self, upperClosure_sups, sups_assoc, sups_subset_left, sups_right_comm, sups_union_left, sups_comm, sups_inter_subset_right, image_subset_sups_right, sups_left_comm, Nonempty.sups, sups_infs_subset_left, sep_sups_le, Finset.coe_sups, iUnion_image_sup_right, sups_union_right, infs_sups_subset_left, singleton_sups, sups_sups_sups_comm, sups_singleton, sups_inter_subset_left, image_sups, sups_eq_self, empty_sups, sups_infs_subset_right, sups_subset, image_sup_prod, sups_subset_self, sups_empty, sups_eq_empty, sups_subset_iff, image_subset_sups_left, iUnion_image_sup_left

Theorems

NameKindAssumesProvesValidatesDepends On
empty_infs πŸ“–mathematicalβ€”HasInfs.infs
Set
hasInfs
instEmptyCollection
β€”image2_empty_left
empty_sups πŸ“–mathematicalβ€”HasSups.sups
Set
hasSups
instEmptyCollection
β€”image2_empty_left
forall_infs_iff πŸ“–mathematicalβ€”SemilatticeInf.toMinβ€”forall_mem_image2
forall_sups_iff πŸ“–mathematicalβ€”SemilatticeSup.toMaxβ€”forall_mem_image2
iUnion_image_inf_left πŸ“–mathematicalβ€”iUnion
Set
instMembership
image
SemilatticeInf.toMin
HasInfs.infs
hasInfs
β€”iUnion_image_left
iUnion_image_inf_right πŸ“–mathematicalβ€”iUnion
Set
instMembership
image
SemilatticeInf.toMin
HasInfs.infs
hasInfs
β€”iUnion_image_right
iUnion_image_sup_left πŸ“–mathematicalβ€”iUnion
Set
instMembership
image
HasSups.sups
hasSups
β€”iUnion_image_left
iUnion_image_sup_right πŸ“–mathematicalβ€”iUnion
Set
instMembership
image
SemilatticeSup.toMax
HasSups.sups
hasSups
β€”iUnion_image_right
image_inf_prod πŸ“–mathematicalβ€”image2
SemilatticeInf.toMin
HasInfs.infs
Set
hasInfs
β€”β€”
image_infs πŸ“–mathematicalβ€”image
DFunLike.coe
HasInfs.infs
Set
hasInfs
β€”image_image2_distrib
InfHomClass.map_inf
image_subset_infs_left πŸ“–mathematicalSet
instMembership
instHasSubset
image
SemilatticeInf.toMin
HasInfs.infs
hasInfs
β€”image_subset_image2_left
image_subset_infs_right πŸ“–mathematicalSet
instMembership
instHasSubset
image
SemilatticeInf.toMin
HasInfs.infs
hasInfs
β€”image_subset_image2_right
image_subset_sups_left πŸ“–mathematicalSet
instMembership
instHasSubset
image
SemilatticeSup.toMax
HasSups.sups
hasSups
β€”image_subset_image2_left
image_subset_sups_right πŸ“–mathematicalSet
instMembership
instHasSubset
image
HasSups.sups
hasSups
β€”image_subset_image2_right
image_sup_prod πŸ“–mathematicalβ€”image2
SemilatticeSup.toMax
HasSups.sups
Set
hasSups
β€”β€”
image_sups πŸ“–mathematicalβ€”image
DFunLike.coe
HasSups.sups
Set
hasSups
β€”image_image2_distrib
SupHomClass.map_sup
inf_mem_infs πŸ“–mathematicalSet
instMembership
HasInfs.infs
hasInfs
SemilatticeInf.toMin
β€”mem_image2_of_mem
infs_assoc πŸ“–mathematicalβ€”HasInfs.infs
Set
hasInfs
β€”image2_assoc
inf_assoc
infs_comm πŸ“–mathematicalβ€”HasInfs.infs
Set
hasInfs
β€”image2_comm
inf_comm
infs_empty πŸ“–mathematicalβ€”HasInfs.infs
Set
hasInfs
instEmptyCollection
β€”image2_empty_right
infs_eq_empty πŸ“–mathematicalβ€”HasInfs.infs
Set
hasInfs
instEmptyCollection
β€”image2_eq_empty_iff
infs_infs_infs_comm πŸ“–mathematicalβ€”HasInfs.infs
Set
hasInfs
β€”image2_image2_image2_comm
inf_inf_inf_comm
infs_inter_subset_left πŸ“–mathematicalβ€”Set
instHasSubset
HasInfs.infs
hasInfs
instInter
β€”image2_inter_subset_left
infs_inter_subset_right πŸ“–mathematicalβ€”Set
instHasSubset
HasInfs.infs
hasInfs
instInter
β€”image2_inter_subset_right
infs_left_comm πŸ“–mathematicalβ€”HasInfs.infs
Set
hasInfs
β€”image2_left_comm
inf_left_comm
infs_nonempty πŸ“–mathematicalβ€”Nonempty
HasInfs.infs
Set
hasInfs
β€”image2_nonempty_iff
infs_right_comm πŸ“–mathematicalβ€”HasInfs.infs
Set
hasInfs
β€”image2_right_comm
inf_right_comm
infs_self πŸ“–mathematicalβ€”HasInfs.infs
Set
hasInfs
InfClosed
β€”LE.le.ge_iff_eq'
HasSubset.Subset.le
subset_infs_self
infs_self_subset
infs_self_subset πŸ“–mathematicalβ€”Set
instHasSubset
HasInfs.infs
hasInfs
InfClosed
β€”infs_subset_iff
infs_singleton πŸ“–mathematicalβ€”HasInfs.infs
Set
hasInfs
instSingletonSet
image
SemilatticeInf.toMin
β€”image2_singleton_right
infs_subset πŸ“–mathematicalSet
instHasSubset
HasInfs.infs
hasInfs
β€”image2_subset
infs_subset_iff πŸ“–mathematicalβ€”Set
instHasSubset
HasInfs.infs
hasInfs
instMembership
SemilatticeInf.toMin
β€”image2_subset_iff
infs_subset_left πŸ“–mathematicalSet
instHasSubset
HasInfs.infs
hasInfs
β€”image2_subset_left
infs_subset_right πŸ“–mathematicalSet
instHasSubset
HasInfs.infs
hasInfs
β€”image2_subset_right
infs_sups_subset_left πŸ“–mathematicalβ€”Set
instHasSubset
HasInfs.infs
hasInfs
Lattice.toSemilatticeInf
DistribLattice.toLattice
HasSups.sups
hasSups
Lattice.toSemilatticeSup
β€”image2_distrib_subset_left
inf_sup_left
infs_sups_subset_right πŸ“–mathematicalβ€”Set
instHasSubset
HasInfs.infs
hasInfs
Lattice.toSemilatticeInf
DistribLattice.toLattice
HasSups.sups
hasSups
Lattice.toSemilatticeSup
β€”image2_distrib_subset_right
inf_sup_right
infs_union_left πŸ“–mathematicalβ€”HasInfs.infs
Set
hasInfs
instUnion
β€”image2_union_left
infs_union_right πŸ“–mathematicalβ€”HasInfs.infs
Set
hasInfs
instUnion
β€”image2_union_right
mem_infs πŸ“–mathematicalβ€”Set
instMembership
HasInfs.infs
hasInfs
SemilatticeInf.toMin
β€”β€”
mem_sups πŸ“–mathematicalβ€”Set
instMembership
HasSups.sups
hasSups
SemilatticeSup.toMax
β€”β€”
sep_infs_le πŸ“–mathematicalβ€”setOf
Set
instMembership
HasInfs.infs
hasInfs
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
β€”ext
sep_sups_le πŸ“–mathematicalβ€”setOf
Set
instMembership
HasSups.sups
hasSups
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”ext
singleton_infs πŸ“–mathematicalβ€”HasInfs.infs
Set
hasInfs
instSingletonSet
image
SemilatticeInf.toMin
β€”image2_singleton_left
singleton_infs_singleton πŸ“–mathematicalβ€”HasInfs.infs
Set
hasInfs
instSingletonSet
SemilatticeInf.toMin
β€”image2_singleton
singleton_sups πŸ“–mathematicalβ€”HasSups.sups
Set
hasSups
instSingletonSet
image
SemilatticeSup.toMax
β€”image2_singleton_left
singleton_sups_singleton πŸ“–mathematicalβ€”HasSups.sups
Set
hasSups
instSingletonSet
SemilatticeSup.toMax
β€”image2_singleton
subset_infs_self πŸ“–mathematicalβ€”Set
instHasSubset
HasInfs.infs
hasInfs
β€”mem_infs
inf_idem
subset_sups_self πŸ“–mathematicalβ€”Set
instHasSubset
HasSups.sups
hasSups
β€”mem_sups
sup_idem
sup_mem_sups πŸ“–mathematicalSet
instMembership
HasSups.sups
hasSups
SemilatticeSup.toMax
β€”mem_image2_of_mem
sups_assoc πŸ“–mathematicalβ€”HasSups.sups
Set
hasSups
β€”image2_assoc
sup_assoc
sups_comm πŸ“–mathematicalβ€”HasSups.sups
Set
hasSups
β€”image2_comm
sup_comm
sups_empty πŸ“–mathematicalβ€”HasSups.sups
Set
hasSups
instEmptyCollection
β€”image2_empty_right
sups_eq_empty πŸ“–mathematicalβ€”HasSups.sups
Set
hasSups
instEmptyCollection
β€”image2_eq_empty_iff
sups_eq_self πŸ“–mathematicalβ€”HasSups.sups
Set
hasSups
SupClosed
β€”LE.le.ge_iff_eq'
HasSubset.Subset.le
subset_sups_self
sups_subset_self
sups_infs_subset_left πŸ“–mathematicalβ€”Set
instHasSubset
HasSups.sups
hasSups
Lattice.toSemilatticeSup
DistribLattice.toLattice
HasInfs.infs
hasInfs
Lattice.toSemilatticeInf
β€”image2_distrib_subset_left
sup_inf_left
sups_infs_subset_right πŸ“–mathematicalβ€”Set
instHasSubset
HasSups.sups
hasSups
Lattice.toSemilatticeSup
DistribLattice.toLattice
HasInfs.infs
hasInfs
Lattice.toSemilatticeInf
β€”image2_distrib_subset_right
sup_inf_right
sups_inter_subset_left πŸ“–mathematicalβ€”Set
instHasSubset
HasSups.sups
hasSups
instInter
β€”image2_inter_subset_left
sups_inter_subset_right πŸ“–mathematicalβ€”Set
instHasSubset
HasSups.sups
hasSups
instInter
β€”image2_inter_subset_right
sups_left_comm πŸ“–mathematicalβ€”HasSups.sups
Set
hasSups
β€”image2_left_comm
sup_left_comm
sups_nonempty πŸ“–mathematicalβ€”Nonempty
HasSups.sups
Set
hasSups
β€”image2_nonempty_iff
sups_right_comm πŸ“–mathematicalβ€”HasSups.sups
Set
hasSups
β€”image2_right_comm
sup_right_comm
sups_singleton πŸ“–mathematicalβ€”HasSups.sups
Set
hasSups
instSingletonSet
image
SemilatticeSup.toMax
β€”image2_singleton_right
sups_subset πŸ“–mathematicalSet
instHasSubset
HasSups.sups
hasSups
β€”image2_subset
sups_subset_iff πŸ“–mathematicalβ€”Set
instHasSubset
HasSups.sups
hasSups
instMembership
SemilatticeSup.toMax
β€”image2_subset_iff
sups_subset_left πŸ“–mathematicalSet
instHasSubset
HasSups.sups
hasSups
β€”image2_subset_left
sups_subset_right πŸ“–mathematicalSet
instHasSubset
HasSups.sups
hasSups
β€”image2_subset_right
sups_subset_self πŸ“–mathematicalβ€”Set
instHasSubset
HasSups.sups
hasSups
SupClosed
β€”sups_subset_iff
sups_sups_sups_comm πŸ“–mathematicalβ€”HasSups.sups
Set
hasSups
β€”image2_image2_image2_comm
sup_sup_sup_comm
sups_union_left πŸ“–mathematicalβ€”HasSups.sups
Set
hasSups
instUnion
β€”image2_union_left
sups_union_right πŸ“–mathematicalβ€”HasSups.sups
Set
hasSups
instUnion
β€”image2_union_right

Set.Nonempty

Theorems

NameKindAssumesProvesValidatesDepends On
infs πŸ“–mathematicalSet.NonemptyHasInfs.infs
Set
Set.hasInfs
β€”image2
of_infs_left πŸ“–β€”Set.Nonempty
HasInfs.infs
Set
Set.hasInfs
β€”β€”of_image2_left
of_infs_right πŸ“–β€”Set.Nonempty
HasInfs.infs
Set
Set.hasInfs
β€”β€”of_image2_right
of_sups_left πŸ“–β€”Set.Nonempty
HasSups.sups
Set
Set.hasSups
β€”β€”of_image2_left
of_sups_right πŸ“–β€”Set.Nonempty
HasSups.sups
Set
Set.hasSups
β€”β€”of_image2_right
sups πŸ“–mathematicalSet.NonemptyHasSups.sups
Set
Set.hasSups
β€”image2

(root)

Definitions

NameCategoryTheorems
HasInfs πŸ“–CompDataβ€”
HasSups πŸ“–CompDataβ€”
Β«term_⊻_Β» πŸ“–CompOpβ€”
Β«term_⊼_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
lowerClosure_infs πŸ“–mathematicalβ€”lowerClosure
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
HasInfs.infs
Set
Set.hasInfs
LowerSet
Preorder.toLE
LowerSet.instMin
β€”LowerSet.ext
Set.ext
LE.le.trans
inf_le_left
inf_le_right
le_inf
upperClosure_sups πŸ“–mathematicalβ€”upperClosure
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
HasSups.sups
Set
Set.hasSups
UpperSet
Preorder.toLE
UpperSet.instMax
β€”UpperSet.ext
Set.ext
LE.le.trans
le_sup_left
le_sup_right
sup_le

---

← Back to Index