Sups
π Source: Mathlib/Data/Set/Sups.lean
Statistics
HasInfs
Definitions
HasSups
Definitions
Set
Definitions
Theorems
Set.Nonempty
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
infs π | mathematical | Set.Nonempty | HasInfs.infsSetSet.hasInfs | β | image2 |
of_infs_left π | β | Set.NonemptyHasInfs.infsSetSet.hasInfs | β | β | of_image2_left |
of_infs_right π | β | Set.NonemptyHasInfs.infsSetSet.hasInfs | β | β | of_image2_right |
of_sups_left π | β | Set.NonemptyHasSups.supsSetSet.hasSups | β | β | of_image2_left |
of_sups_right π | β | Set.NonemptyHasSups.supsSetSet.hasSups | β | β | of_image2_right |
sups π | mathematical | Set.Nonempty | HasSups.supsSetSet.hasSups | β | image2 |
(root)
Definitions
| Name | Category | Theorems |
|---|---|---|
HasInfs π | CompData | β |
HasSups π | CompData | β |
Β«term_β»_Β» π | CompOp | β |
Β«term_βΌ_Β» π | CompOp | β |
Theorems
---