| Name | Category | Theorems |
comap π | CompOp | 8 mathmath: AddAction.orbitRel_le_fst, MulAction.orbitRel_le_snd, comap_rel, MulAction.orbitRel_le_fst, AddAction.orbitRel_le_snd, SubAddAction.orbitRel_of_subAdd, SubMulAction.orbitRel_of_subMul, comap_eq
|
comapQuotientEquiv π | CompOp | β |
completeLattice π | CompOp | 24 mathmath: QuotientAddGroup.leftRel_eq_top, AddCon.toSetoid_top, AddCon.toSetoid_bot, injective_iff_ker_bot, top_def, sSup_def, mk_eq_top, sup_eq_eqvGen, QuotientAddGroup.rightRel_eq_top, Quotient.subsingleton_iff, bot_def, Con.toSetoid_eq_bot, SeparationQuotient.inseparableSetoid_eq_top_iff, Con.toSetoid_bot, eq_top_iff, sup_def, QuotientGroup.rightRel_eq_top, sSup_eq_eqvGen, mk_eq_bot, AddCon.toSetoid_eq_bot, Con.toSetoid_top, Con.toSetoid_eq_top, QuotientGroup.leftRel_eq_top, AddCon.toSetoid_eq_top
|
correspondence π | CompOp | β |
gi π | CompOp | β |
instInfSet π | CompOp | 9 mathmath: Con.sInf_toSetoid, quotient_mk_sInf_eq, RingCon.sInf_toSetoid, sInf_equiv, sInf_iff, continuous_map_sInf, eqvGen_eq, AddCon.sInf_toSetoid, sInf_def
|
instLE_mathlib π | CompOp | 9 mathmath: AddAction.orbitRel_le_fst, eqvGen_le, MulAction.orbitRel_le_snd, AddAction.orbitRel_addSubgroup_le, MulAction.orbitRel_le_fst, AddAction.orbitRel_le_snd, le_def, eqvGen_mono, MulAction.orbitRel_subgroup_le
|
instMin_mathlib π | CompOp | 2 mathmath: inf_iff_and, inf_def
|
instPartialOrder π | CompOp | β |
ker π | CompOp | 22 mathmath: ker_apply_mk_out, finite_classes_ker, Topology.IsQuotientMap.lift_apply, classes_ker_subset_fiber_set, Topology.IsQuotientMap.homeomorph_apply, ker_iff_mem_preimage, Topology.IsQuotientMap.homeomorph_symm_apply, injective_iff_ker_bot, kerLift_mk, quotientKerEquivOfRightInverse_apply, kerLift_injective, ker_def, HomogeneousLocalization.zero_eq, ker_mk_eq, HomogeneousLocalization.one_eq, range_kerLift_eq_range, Function.RightInverse.homeomorph_symm_apply, card_classes_ker_le, quotientKerEquivOfRightInverse_symm_apply, ker_lift_injective, Function.RightInverse.homeomorph_apply, comap_eq
|
kerLift π | CompOp | 7 mathmath: Topology.IsQuotientMap.homeomorph_apply, kerLift_mk, quotientKerEquivOfRightInverse_apply, kerLift_injective, range_kerLift_eq_range, ker_lift_injective, Function.RightInverse.homeomorph_apply
|
liftEquiv π | CompOp | β |
map π | CompOp | 1 mathmath: mapOfSurjective_eq_map
|
mapOfSurjective π | CompOp | 1 mathmath: mapOfSurjective_eq_map
|
map_of_le π | CompOp | 1 mathmath: continuous_map_of_le
|
map_sInf π | CompOp | 1 mathmath: continuous_map_sInf
|
piQuotientEquiv π | CompOp | 2 mathmath: piQuotientEquiv_symm_apply, piQuotientEquiv_apply
|
prod π | CompOp | 7 mathmath: QuotientGroup.rightRel_prod, QuotientGroup.leftRel_prod, QuotientAddGroup.leftRel_prod, prod_apply, prodQuotientEquiv_symm_apply, prodQuotientEquiv_apply, QuotientAddGroup.rightRel_prod
|
prodQuotientEquiv π | CompOp | 2 mathmath: prodQuotientEquiv_symm_apply, prodQuotientEquiv_apply
|
quotientKerEquivOfRightInverse π | CompOp | 2 mathmath: quotientKerEquivOfRightInverse_apply, quotientKerEquivOfRightInverse_symm_apply
|
quotientKerEquivOfSurjective π | CompOp | β |
quotientKerEquivRange π | CompOp | β |
quotientKerEquivRangeKerLift π | CompOp | β |
quotientQuotientEquivQuotient π | CompOp | β |
sigmaQuotientEquivOfLe π | CompOp | β |