Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Data/Setoid/Basic.lean

Statistics

MetricCount
Definitionscomap, comapQuotientEquiv, completeLattice, correspondence, gi, instInfSet, instLE_mathlib, instMin_mathlib, instPartialOrder, ker, kerLift, liftEquiv, map, mapOfSurjective, map_of_le, map_sInf, piQuotientEquiv, prod, prodQuotientEquiv, quotientKerEquivOfRightInverse, quotientKerEquivOfSurjective, quotientKerEquivRange, quotientKerEquivRangeKerLift, quotientQuotientEquivQuotient, sigmaQuotientEquivOfLe
25
Theoremssubsingleton_iff, subsingleton_iff, bot_def, comap_eq, comap_rel, comm', eq_iff_rel_eq, eq_top_iff, eqvGen_eq, eqvGen_idem, eqvGen_le, eqvGen_mono, eqvGen_of_setoid, ext_iff, inf_def, inf_iff_and, injective_iff_ker_bot, kerLift_injective, kerLift_mk, ker_apply_mk_out, ker_def, ker_eq_lift_of_injective, ker_iff_mem_preimage, ker_lift_injective, ker_mk_eq, le_def, lift_injective_iff_ker_eq_of_le, lift_unique, mapOfSurjective_eq_map, mk_eq_bot, mk_eq_top, piQuotientEquiv_apply, piQuotientEquiv_symm_apply, piSetoid_apply, prodQuotientEquiv_apply, prodQuotientEquiv_symm_apply, prod_apply, quotientKerEquivOfRightInverse_apply, quotientKerEquivOfRightInverse_symm_apply, quotient_mk_sInf_eq, range_kerLift_eq_range, refl', sInf_def, sInf_equiv, sInf_iff, sSup_def, sSup_eq_eqvGen, sup_def, sup_eq_eqvGen, symm', top_def, trans'
52
Total77

Quot

Theorems

NameKindAssumesProvesValidatesDepends On
subsingleton_iff πŸ“–mathematicalβ€”Relation.EqvGen
Top.top
Pi.instTopForall
BooleanAlgebra.toTop
Prop.instBooleanAlgebra
β€”Function.Surjective.forall
mk_surjective
eq

Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
subsingleton_iff πŸ“–mathematicalβ€”Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Setoid.completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Function.Surjective.forall
mk'_surjective

Setoid

Definitions

NameCategoryTheorems
comap πŸ“–CompOp
8 mathmath: AddAction.orbitRel_le_fst, MulAction.orbitRel_le_snd, comap_rel, MulAction.orbitRel_le_fst, AddAction.orbitRel_le_snd, SubAddAction.orbitRel_of_subAdd, SubMulAction.orbitRel_of_subMul, comap_eq
comapQuotientEquiv πŸ“–CompOpβ€”
completeLattice πŸ“–CompOp
24 mathmath: QuotientAddGroup.leftRel_eq_top, AddCon.toSetoid_top, AddCon.toSetoid_bot, injective_iff_ker_bot, top_def, sSup_def, mk_eq_top, sup_eq_eqvGen, QuotientAddGroup.rightRel_eq_top, Quotient.subsingleton_iff, bot_def, Con.toSetoid_eq_bot, SeparationQuotient.inseparableSetoid_eq_top_iff, Con.toSetoid_bot, eq_top_iff, sup_def, QuotientGroup.rightRel_eq_top, sSup_eq_eqvGen, mk_eq_bot, AddCon.toSetoid_eq_bot, Con.toSetoid_top, Con.toSetoid_eq_top, QuotientGroup.leftRel_eq_top, AddCon.toSetoid_eq_top
correspondence πŸ“–CompOpβ€”
gi πŸ“–CompOpβ€”
instInfSet πŸ“–CompOp
9 mathmath: Con.sInf_toSetoid, quotient_mk_sInf_eq, RingCon.sInf_toSetoid, sInf_equiv, sInf_iff, continuous_map_sInf, eqvGen_eq, AddCon.sInf_toSetoid, sInf_def
instLE_mathlib πŸ“–CompOp
9 mathmath: AddAction.orbitRel_le_fst, eqvGen_le, MulAction.orbitRel_le_snd, AddAction.orbitRel_addSubgroup_le, MulAction.orbitRel_le_fst, AddAction.orbitRel_le_snd, le_def, eqvGen_mono, MulAction.orbitRel_subgroup_le
instMin_mathlib πŸ“–CompOp
2 mathmath: inf_iff_and, inf_def
instPartialOrder πŸ“–CompOpβ€”
ker πŸ“–CompOp
22 mathmath: ker_apply_mk_out, finite_classes_ker, Topology.IsQuotientMap.lift_apply, classes_ker_subset_fiber_set, Topology.IsQuotientMap.homeomorph_apply, ker_iff_mem_preimage, Topology.IsQuotientMap.homeomorph_symm_apply, injective_iff_ker_bot, kerLift_mk, quotientKerEquivOfRightInverse_apply, kerLift_injective, ker_def, HomogeneousLocalization.zero_eq, ker_mk_eq, HomogeneousLocalization.one_eq, range_kerLift_eq_range, Function.RightInverse.homeomorph_symm_apply, card_classes_ker_le, quotientKerEquivOfRightInverse_symm_apply, ker_lift_injective, Function.RightInverse.homeomorph_apply, comap_eq
kerLift πŸ“–CompOp
7 mathmath: Topology.IsQuotientMap.homeomorph_apply, kerLift_mk, quotientKerEquivOfRightInverse_apply, kerLift_injective, range_kerLift_eq_range, ker_lift_injective, Function.RightInverse.homeomorph_apply
liftEquiv πŸ“–CompOpβ€”
map πŸ“–CompOp
1 mathmath: mapOfSurjective_eq_map
mapOfSurjective πŸ“–CompOp
1 mathmath: mapOfSurjective_eq_map
map_of_le πŸ“–CompOp
1 mathmath: continuous_map_of_le
map_sInf πŸ“–CompOp
1 mathmath: continuous_map_sInf
piQuotientEquiv πŸ“–CompOp
2 mathmath: piQuotientEquiv_symm_apply, piQuotientEquiv_apply
prod πŸ“–CompOp
7 mathmath: QuotientGroup.rightRel_prod, QuotientGroup.leftRel_prod, QuotientAddGroup.leftRel_prod, prod_apply, prodQuotientEquiv_symm_apply, prodQuotientEquiv_apply, QuotientAddGroup.rightRel_prod
prodQuotientEquiv πŸ“–CompOp
2 mathmath: prodQuotientEquiv_symm_apply, prodQuotientEquiv_apply
quotientKerEquivOfRightInverse πŸ“–CompOp
2 mathmath: quotientKerEquivOfRightInverse_apply, quotientKerEquivOfRightInverse_symm_apply
quotientKerEquivOfSurjective πŸ“–CompOpβ€”
quotientKerEquivRange πŸ“–CompOpβ€”
quotientKerEquivRangeKerLift πŸ“–CompOpβ€”
quotientQuotientEquivQuotient πŸ“–CompOpβ€”
sigmaQuotientEquivOfLe πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bot_def πŸ“–mathematicalβ€”Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
completeLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”β€”
comap_eq πŸ“–mathematicalβ€”comap
ker
Quotient.mk''
β€”ext
Quotient.eq
comap_rel πŸ“–mathematicalβ€”comapβ€”β€”
comm' πŸ“–β€”β€”β€”β€”symm'
eq_iff_rel_eq πŸ“–β€”β€”β€”β€”ext
eq_top_iff πŸ“–mathematicalβ€”Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”eq_top_iff
le_def
top_def
eqvGen_eq πŸ“–mathematicalβ€”Relation.EqvGen.setoid
InfSet.sInf
instInfSet
setOf
β€”le_antisymm
refl'
symm'
trans'
sInf_le
eqvGen_idem πŸ“–mathematicalβ€”Relation.EqvGen.setoidβ€”eqvGen_of_setoid
eqvGen_le πŸ“–mathematicalβ€”instLE_mathlib
Relation.EqvGen.setoid
β€”eqvGen_eq
sInf_le
eqvGen_mono πŸ“–mathematicalβ€”instLE_mathlib
Relation.EqvGen.setoid
β€”eqvGen_le
eqvGen_of_setoid πŸ“–mathematicalβ€”Relation.EqvGen.setoidβ€”le_antisymm
eqvGen_eq
sInf_le
ext_iff πŸ“–β€”β€”β€”β€”ext
inf_def πŸ“–mathematicalβ€”instMin_mathlib
Pi.instMinForall_mathlib
SemilatticeInf.toMin
Lattice.toSemilatticeInf
CompleteLattice.toLattice
Prop.instCompleteLattice
β€”β€”
inf_iff_and πŸ“–mathematicalβ€”instMin_mathlibβ€”β€”
injective_iff_ker_bot πŸ“–mathematicalβ€”ker
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
completeLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”eq_bot_iff
kerLift_injective πŸ“–mathematicalβ€”ker
kerLift
β€”Quotient.inductionOnβ‚‚'
Quotient.sound'
kerLift_mk πŸ“–mathematicalβ€”kerLift
ker
β€”β€”
ker_apply_mk_out πŸ“–mathematicalβ€”Quotient.out
ker
β€”Quotient.mk_out
ker_def πŸ“–mathematicalβ€”kerβ€”β€”
ker_eq_lift_of_injective πŸ“–β€”instLE_mathlib
ker
β€”β€”le_antisymm
ker_iff_mem_preimage πŸ“–mathematicalβ€”ker
Set
Set.instMembership
Set.preimage
Set.instSingletonSet
β€”β€”
ker_lift_injective πŸ“–mathematicalβ€”ker
kerLift
β€”kerLift_injective
ker_mk_eq πŸ“–mathematicalβ€”ker
Quotient.mk''
β€”ext
Quotient.eq
le_def πŸ“–mathematicalβ€”instLE_mathlibβ€”β€”
lift_injective_iff_ker_eq_of_le πŸ“–β€”instLE_mathlib
ker
β€”β€”ker_eq_lift_of_injective
kerLift_injective
lift_unique πŸ“–β€”instLE_mathlib
ker
Quotient.mk''
β€”β€”β€”
mapOfSurjective_eq_map πŸ“–mathematicalinstLE_mathlib
ker
map
mapOfSurjective
β€”eqvGen_of_setoid
mk_eq_bot πŸ“–mathematicalβ€”Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
completeLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”β€”
mk_eq_top πŸ“–mathematicalβ€”Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Pi.instTopForall
BooleanAlgebra.toTop
Prop.instBooleanAlgebra
β€”β€”
piQuotientEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
piSetoid
EquivLike.toFunLike
Equiv.instEquivLike
piQuotientEquiv
Quotient.mk''
Quotient.out
β€”β€”
piQuotientEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
piSetoid
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
piQuotientEquiv
Quotient.liftOn'
Quotient.mk''
β€”β€”
piSetoid_apply πŸ“–mathematicalβ€”piSetoidβ€”β€”
prodQuotientEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
prod
EquivLike.toFunLike
Equiv.instEquivLike
prodQuotientEquiv
Quotient.mapβ‚‚
β€”β€”
prodQuotientEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
prod
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
prodQuotientEquiv
Quotient.liftOn'
Quotient.mk''
β€”β€”
prod_apply πŸ“–mathematicalβ€”prodβ€”β€”
quotientKerEquivOfRightInverse_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
ker
EquivLike.toFunLike
Equiv.instEquivLike
quotientKerEquivOfRightInverse
kerLift
β€”β€”
quotientKerEquivOfRightInverse_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
ker
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
quotientKerEquivOfRightInverse
Quotient.mk''
β€”β€”
quotient_mk_sInf_eq πŸ“–mathematicalβ€”InfSet.sInf
instInfSet
β€”β€”
range_kerLift_eq_range πŸ“–mathematicalβ€”Set.range
ker
kerLift
β€”Set.range_quotient_lift
refl' πŸ“–β€”β€”β€”β€”β€”
sInf_def πŸ“–mathematicalβ€”InfSet.sInf
instInfSet
Pi.infSet
CompleteSemilatticeInf.toInfSet
CompleteLattice.toCompleteSemilatticeInf
Prop.instCompleteLattice
Set.image
β€”sInf_image
iInf_apply
iInf_Prop_eq
sInf_equiv πŸ“–mathematicalβ€”InfSet.sInf
instInfSet
β€”β€”
sInf_iff πŸ“–mathematicalβ€”InfSet.sInf
instInfSet
β€”β€”
sSup_def πŸ“–mathematicalβ€”SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
completeLattice
Relation.EqvGen.setoid
Pi.supSet
Prop.instCompleteLattice
Set.image
β€”sSup_eq_eqvGen
sSup_image
iSup_apply
iSup_Prop_eq
sSup_eq_eqvGen πŸ“–mathematicalβ€”SupSet.sSup
CompleteSemilatticeSup.toSupSet
CompleteLattice.toCompleteSemilatticeSup
completeLattice
Relation.EqvGen.setoid
Set
Set.instMembership
β€”eqvGen_eq
Set.ext
sup_def πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
completeLattice
Relation.EqvGen.setoid
Pi.instMaxForall_mathlib
Prop.instCompleteLattice
β€”sup_eq_eqvGen
sup_eq_eqvGen πŸ“–mathematicalβ€”SemilatticeSup.toMax
Lattice.toSemilatticeSup
CompleteLattice.toLattice
completeLattice
Relation.EqvGen.setoid
β€”eqvGen_eq
symm' πŸ“–β€”β€”β€”β€”β€”
top_def πŸ“–mathematicalβ€”Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Pi.instTopForall
BooleanAlgebra.toTop
Prop.instBooleanAlgebra
β€”β€”
trans' πŸ“–β€”β€”β€”β€”β€”

---

← Back to Index