Documentation Verification Report

Partition

πŸ“ Source: Mathlib/Data/Setoid/Partition.lean

Statistics

MetricCount
DefinitionsIndexedPartition, coarserPartition, equivQuotient, index, instInhabitedQuotient, instInhabitedUnivOfUnique, mk', out, piecewise, proj, setoid, some, Partition, Partition, IsPartition, finpartition, completeLattice, le, orderIso, partialOrder, classes, mkClasses, quotientEquivClasses, setoidOfDisjointUnion
24
TheoremsisPartition_parts, class_of, disjoint, eq, eq_of_mem, equivQuotient_index, equivQuotient_index_apply, equivQuotient_symm_proj_apply, exists_mem, iUnion, index_out, index_some, mem_iff_index_eq, mem_index, out_proj, piecewise_apply, piecewise_bij, piecewise_inj, piecewise_preimage, proj_eq_iff, proj_fiber, proj_out, proj_some_index, range_piecewise, range_piecewise_subset, some_index, some_mem, isPartition_of_exists_of_ne_empty, finpartition_parts, pairwiseDisjoint, sUnion_eq_univ, card_classes_ker_le, classes_eqv_classes, classes_inj, classes_ker_subset_fiber_set, classes_mkClasses, empty_notMem_classes, eq_eqv_class_of_mem, eq_iff_classes_eq, eq_of_mem_classes, eq_of_mem_eqv_class, eqv_class_mem, eqv_class_mem', eqv_classes_disjoint, eqv_classes_of_disjoint_union, exists_of_mem_partition, finite_classes_ker, isPartition_classes, mem_classes, mkClasses_classes, nonempty_of_mem_partition, quotientEquivClasses_mk_eq, rel_iff_exists_classes, sUnion_classes
54
Total78

Finpartition

Theorems

NameKindAssumesProvesValidatesDepends On
isPartition_parts πŸ“–mathematicalβ€”Setoid.IsPartition
SetLike.coe
Finset
Set
Finset.instSetLike
parts
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.univ
β€”bot_notMem
Setoid.eqv_classes_of_disjoint_union
Finset.sup_id_set_eq_sUnion
sup_parts
Finset.SupIndep.pairwiseDisjoint
supIndep

IndexedPartition

Definitions

NameCategoryTheorems
coarserPartition πŸ“–CompOpβ€”
equivQuotient πŸ“–CompOp
4 mathmath: proj_fiber, equivQuotient_symm_proj_apply, equivQuotient_index_apply, equivQuotient_index
index πŸ“–CompOp
14 mathmath: equivQuotient_symm_proj_apply, mem_iff_index_eq, some_index, class_of, equivQuotient_index_apply, index_some, out_proj, proj_eq_iff, piecewise_apply, eq, index_out, mem_index, proj_some_index, equivQuotient_index
instInhabitedQuotient πŸ“–CompOpβ€”
instInhabitedUnivOfUnique πŸ“–CompOpβ€”
mk' πŸ“–CompOpβ€”
out πŸ“–CompOp
3 mathmath: proj_out, out_proj, index_out
piecewise πŸ“–CompOp
10 mathmath: aestronglyMeasurable_piecewise, piecewise_preimage, piecewise_bij, piecewise_inj, measurable_piecewise, stronglyMeasurable_piecewise, piecewise_apply, aemeasurable_piecewise, range_piecewise, range_piecewise_subset
proj πŸ“–CompOp
8 mathmath: proj_fiber, equivQuotient_symm_proj_apply, proj_out, equivQuotient_index_apply, out_proj, proj_eq_iff, proj_some_index, equivQuotient_index
setoid πŸ“–CompOp
3 mathmath: some_index, class_of, index_out
some πŸ“–CompOp
5 mathmath: some_index, some_mem, index_some, out_proj, proj_some_index

Theorems

NameKindAssumesProvesValidatesDepends On
class_of πŸ“–mathematicalβ€”setOf
setoid
index
β€”Set.ext
mem_iff_index_eq
disjoint πŸ“–mathematicalβ€”Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Set.disjoint_left
eq_of_mem
eq πŸ“–mathematicalβ€”setOf
index
β€”Set.ext
mem_iff_index_eq
eq_of_mem πŸ“–β€”Set
Set.instMembership
β€”β€”β€”
equivQuotient_index πŸ“–mathematicalβ€”Quotient
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equivQuotient
index
proj
β€”equivQuotient_index_apply
equivQuotient_index_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quotient
EquivLike.toFunLike
Equiv.instEquivLike
equivQuotient
index
proj
β€”proj_eq_iff
some_index
equivQuotient_symm_proj_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Quotient
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivQuotient
proj
index
β€”β€”
exists_mem πŸ“–mathematicalβ€”Set
Set.instMembership
β€”mem_index
iUnion πŸ“–mathematicalβ€”Set.iUnion
Set.univ
β€”Set.ext
exists_mem
index_out πŸ“–mathematicalβ€”index
Quotient.out
setoid
DFunLike.coe
Function.Embedding
Quotient
Function.instFunLikeEmbedding
out
β€”Quotient.inductionOn'
Setoid.ker_apply_mk_out
index_some
index_some πŸ“–mathematicalβ€”index
some
β€”mem_iff_index_eq
some_mem
mem_iff_index_eq πŸ“–mathematicalβ€”Set
Set.instMembership
index
β€”eq_of_mem
mem_index
mem_index πŸ“–mathematicalβ€”Set
Set.instMembership
index
β€”β€”
out_proj πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Quotient
Function.instFunLikeEmbedding
out
proj
some
index
β€”β€”
piecewise_apply πŸ“–mathematicalβ€”piecewise
index
β€”β€”
piecewise_bij πŸ“–mathematicalSet.BijOnFunction.Bijective
piecewise
β€”Set.BijOn.congr
piecewise_apply
mem_iff_index_eq
Set.injOn_of_injective
Set.BijOn.injOn
Set.BijOn.image_eq
disjoint
Set.bijOn_univ
iUnion
Set.bijOn_iUnion
piecewise_inj πŸ“–mathematicalSet.InjOn
Set.PairwiseDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.univ
Set.image
piecewiseβ€”Set.PairwiseDisjoint.elim
Mathlib.Tactic.Contrapose.contrapose₃
Disjoint.ne_of_mem
Set.mem_image_of_mem
mem_index
piecewise_preimage πŸ“–mathematicalβ€”Set.preimage
piecewise
Set.iUnion
Set
Set.instInter
β€”Set.ext
Set.mem_iUnion_of_mem
Set.mem_inter
mem_index
Set.mem_preimage
piecewise_apply
mem_iff_index_eq
proj_eq_iff πŸ“–mathematicalβ€”proj
index
β€”Quotient.eq''
proj_fiber πŸ“–mathematicalβ€”Set.preimage
Quotient
proj
Set
Set.instSingletonSet
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivQuotient
β€”Quotient.inductionOn'
Set.ext
mem_iff_index_eq
Quotient.eq''
proj_out πŸ“–mathematicalβ€”proj
DFunLike.coe
Function.Embedding
Quotient
Function.instFunLikeEmbedding
out
β€”Quotient.inductionOn'
Quotient.sound'
some_index
proj_some_index πŸ“–mathematicalβ€”proj
some
index
β€”Quotient.eq''
some_index
range_piecewise πŸ“–mathematicalβ€”Set.range
piecewise
Set.iUnion
Set.image
β€”Set.ext
Set.mem_iUnion_of_mem
mem_index
mem_iff_index_eq
range_piecewise_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.range
piecewise
Set.iUnion
β€”β€”
some_index πŸ“–mathematicalβ€”setoid
some
index
β€”index_some
some_mem πŸ“–mathematicalβ€”Set
Set.instMembership
some
β€”β€”

Nat

Definitions

NameCategoryTheorems
Partition πŸ“–CompData
10 mathmath: Partition.card_restricted_eq_card_countRestricted, Partition.hasProd_powerSeriesMk_card_countRestricted, Partition.powerSeriesMk_card_restricted_eq_tprod, Partition.toFinsuppAntidiag_injective, Partition.powerSeriesMk_card_restricted_eq_powerSeriesMk_card_countRestricted, Partition.hasProd_powerSeriesMk_card_restricted, Partition.powerSeriesMk_card_countRestricted_eq_tprod, Partition.card_odds_eq_card_distincts, Partition.ofComposition_surj, Partition.coeff_genFun

Set.PairwiseDisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
isPartition_of_exists_of_ne_empty πŸ“–mathematicalSet.PairwiseDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instMembership
Set.instEmptyCollection
Setoid.IsPartitionβ€”existsUnique_of_exists_of_unique
elim

Setoid

Definitions

NameCategoryTheorems
IsPartition πŸ“–MathDef
7 mathmath: Finpartition.isPartition_parts, SimpleGraph.Partition.isPartition, isPartition_classes, Set.PairwiseDisjoint.isPartition_of_exists_of_ne_empty, MulAction.IsPartition.of_orbits, SimpleGraph.Coloring.colorClasses_isPartition, AddAction.IsPartition.of_orbits
classes πŸ“–CompOp
14 mathmath: finite_classes_ker, classes_mkClasses, classes_ker_subset_fiber_set, isPartition_classes, mkClasses_classes, classes_eqv_classes, empty_notMem_classes, sUnion_classes, DiscreteQuotient.comp_finsetClopens, classes_inj, card_classes_ker_le, quotientEquivClasses_mk_eq, rel_iff_exists_classes, mem_classes
mkClasses πŸ“–CompOp
6 mathmath: classes_mkClasses, mkClasses_classes, eqv_class_mem, eq_eqv_class_of_mem, exists_of_mem_partition, eqv_class_mem'
quotientEquivClasses πŸ“–CompOp
1 mathmath: quotientEquivClasses_mk_eq
setoidOfDisjointUnion πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
card_classes_ker_le πŸ“–mathematicalβ€”Fintype.card
Set.Elem
Set
classes
ker
β€”le_trans
Set.card_le_card
classes_ker_subset_fiber_set
Fintype.card_range_le
classes_eqv_classes πŸ“–mathematicalβ€”ExistsUnique
Set
Set.instMembership
classes
β€”ExistsUnique.intro
mem_classes
refl'
Set.ext
trans'
symm'
classes_inj πŸ“–mathematicalβ€”classesβ€”ext
classes_ker_subset_fiber_set πŸ“–mathematicalβ€”Set
Set.instHasSubset
classes
ker
Set.range
setOf
β€”Set.mem_range
classes_mkClasses πŸ“–mathematicalIsPartitionclasses
mkClasses
Set
Set.instMembership
Set.instEmptyCollection
β€”Set.ext
eq_eqv_class_of_mem
exists_of_mem_partition
empty_notMem_classes πŸ“–mathematicalβ€”Set
Set.instMembership
classes
Set.instEmptyCollection
β€”Set.notMem_empty
refl'
eq_eqv_class_of_mem πŸ“–mathematicalExistsUnique
Set
Set.instMembership
setOf
mkClasses
β€”Set.ext
eq_of_mem_eqv_class
eq_iff_classes_eq πŸ“–mathematicalβ€”setOfβ€”ext
Set.ext_iff
eq_of_mem_classes πŸ“–β€”Set
Set.instMembership
classes
β€”β€”eq_of_mem_eqv_class
classes_eqv_classes
eq_of_mem_eqv_class πŸ“–β€”ExistsUnique
Set
Set.instMembership
β€”β€”ExistsUnique.unique
eqv_class_mem πŸ“–mathematicalExistsUnique
Set
Set.instMembership
setOf
mkClasses
β€”ExistsUnique.elim
eq_eqv_class_of_mem
eqv_class_mem' πŸ“–mathematicalExistsUnique
Set
Set.instMembership
setOf
mkClasses
β€”comm'
eqv_class_mem
eqv_classes_disjoint πŸ“–mathematicalExistsUnique
Set
Set.instMembership
Set.PairwiseDisjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Set.disjoint_left
ExistsUnique.elim
eq_of_mem_eqv_class
eqv_classes_of_disjoint_union πŸ“–mathematicalSet.sUnion
Set.univ
Set.PairwiseDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
ExistsUnique
Set.instMembership
β€”Set.mem_sUnion
Set.mem_univ
ExistsUnique.intro
Set.PairwiseDisjoint.elim_set
exists_of_mem_partition πŸ“–mathematicalIsPartition
Set
Set.instMembership
setOf
mkClasses
Set.instEmptyCollection
β€”nonempty_of_mem_partition
eq_eqv_class_of_mem
finite_classes_ker πŸ“–mathematicalβ€”Set.Finite
Set
classes
ker
β€”Set.Finite.subset
Set.finite_range
classes_ker_subset_fiber_set
isPartition_classes πŸ“–mathematicalβ€”IsPartition
classes
β€”empty_notMem_classes
classes_eqv_classes
mem_classes πŸ“–mathematicalβ€”Set
Set.instMembership
classes
setOf
β€”β€”
mkClasses_classes πŸ“–mathematicalβ€”mkClasses
classes
classes_eqv_classes
β€”ext
classes_eqv_classes
symm'
mem_classes
refl'
eq_of_mem_classes
nonempty_of_mem_partition πŸ“–mathematicalIsPartition
Set
Set.instMembership
Set.Nonemptyβ€”Set.nonempty_iff_ne_empty
quotientEquivClasses_mk_eq πŸ“–mathematicalβ€”Set
Set.instMembership
classes
DFunLike.coe
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
quotientEquivClasses
setOf
β€”mem_classes
rel_iff_exists_classes πŸ“–mathematicalβ€”Set
Set.instMembership
classes
β€”mem_classes
refl'
trans'
symm'
sUnion_classes πŸ“–mathematicalβ€”Set.sUnion
classes
Set.univ
β€”Set.eq_univ_of_forall
Set.mem_sUnion

Setoid.IsPartition

Definitions

NameCategoryTheorems
finpartition πŸ“–CompOp
1 mathmath: finpartition_parts

Theorems

NameKindAssumesProvesValidatesDepends On
finpartition_parts πŸ“–mathematicalSetoid.IsPartition
SetLike.coe
Finset
Set
Finset.instSetLike
Finpartition.parts
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.univ
finpartition
β€”β€”
pairwiseDisjoint πŸ“–mathematicalSetoid.IsPartitionSet.PairwiseDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Setoid.eqv_classes_disjoint
sUnion_eq_univ πŸ“–mathematicalSetoid.IsPartitionSet.sUnion
Set.univ
β€”Set.eq_univ_of_forall
Set.mem_sUnion

Setoid.Partition

Definitions

NameCategoryTheorems
completeLattice πŸ“–CompOpβ€”
le πŸ“–CompOpβ€”
orderIso πŸ“–CompOpβ€”
partialOrder πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
IndexedPartition πŸ“–CompDataβ€”
Partition πŸ“–CompData
13 mathmath: Partition.bot_notMem, Partition.pairwiseDisjoint, Partition.coe_copy, Partition.partscopyEquiv_symm_apply_coe, Partition.iSup_eq, Partition.ext_iff, Partition.sSupIndep, Partition.mem_copy_iff, Partition.sSup_eq, Partition.coe_removeBot, Partition.partscopyEquiv_apply_coe, Partition.parts_nonempty, Partition.coe_parts

---

← Back to Index