Documentation Verification Report

Subtype

πŸ“ Source: Mathlib/Data/Subtype.lean

Statistics

MetricCount
Definitionscoind, instHasEquiv_mathlib, instSetoid_mathlib, map, restrict
5
Theoremsextend_val_apply, extend_val_apply', coe_eq_iff, coe_eq_of_eq_mk, coe_eta, coe_inj, coe_injective, coe_mk, coe_ne_coe, coe_prop, coind_coe, coind_injective, equiv_iff, equivalence, exists', ext_iff_val, ext_val, forall', heq_iff_coe_eq, heq_iff_coe_heq, map_coe, map_comp, map_def, map_eq, map_id, map_injective, map_involutive, map_ne, mk_eq_mk, prop, refl, restrict_apply, restrict_def, restrict_injective, surjective_restrict, trans, val_inj, val_injective, val_prop, exists_eq_subtype_mk_iff, exists_subtype_mk_eq_iff
41
Total46

Function

Theorems

NameKindAssumesProvesValidatesDepends On
extend_val_apply πŸ“–mathematicalβ€”extendβ€”Injective.extend_apply
Subtype.val_injective
extend_val_apply' πŸ“–mathematicalβ€”extendβ€”β€”

Subtype

Definitions

NameCategoryTheorems
coind πŸ“–CompOp
8 mathmath: Continuous.subtype_coind, coind_injective, IsOpenMap.subtype_coind, coind_bijective, IsClosedMap.subtype_coind, coind_coe, coind_surjective, Set.Subtype.range_coind
instHasEquiv_mathlib πŸ“–CompOp
3 mathmath: equiv_iff, refl, equivalence
instSetoid_mathlib πŸ“–CompOpβ€”
map πŸ“–CompOp
25 mathmath: map_involutive, StarSubalgebra.inclusion_apply, List.filter_attach', UniformContinuous.subtype_map, Unitary.map_coe, List.filter_attach, IsClosedMap.subtype_map, IsOpenMap.subtype_map, map_id, Multiset.filter_attach, cfcHomSuperset_apply, Set.range_subtype_map, SpectrumRestricts.starAlgHom_apply, QuasispectrumRestricts.nonUnitalStarAlgHom_apply, map_eq, Measurable.subtype_map, map_injective, Equiv.coe_subtypeEquiv_eq_map, map_comp, Finset.filter_attach', Continuous.subtype_map, cfcβ‚™HomSuperset_apply, map_coe, Multiset.filter_attach', map_def
restrict πŸ“–CompOp
37 mathmath: CategoryTheory.Limits.cokernelBiproductΞΉIso_hom, restrict_apply, CategoryTheory.Limits.biproduct.fromSubtype_Ο€_subtype, CategoryTheory.Limits.biproduct.fromSubtype_Ο€_subtype_assoc, CategoryTheory.Limits.kernelForkBiproductToSubtype_cone, CategoryTheory.Limits.cokernelCoforkBiproductFromSubtype_isColimit, CategoryTheory.Limits.biproduct.fromSubtype_toSubtype_assoc, CategoryTheory.Limits.kernelBiproductΟ€Iso_hom, CategoryTheory.Limits.biproduct.toSubtype_Ο€_assoc, CategoryTheory.Limits.kernelBiproductToSubtypeIso_hom, CategoryTheory.Limits.instHasCokernelFromSubtype, CategoryTheory.Limits.biproduct.fromSubtype_Ο€, CategoryTheory.Limits.biproduct.toSubtype_fromSubtype, surjective_restrict, restrict_injective, CategoryTheory.Limits.cokernelBiproductΞΉIso_inv, CategoryTheory.Limits.kernelBiproductΟ€Iso_inv, CategoryTheory.Limits.cokernelBiproductFromSubtypeIso_hom, CategoryTheory.Limits.biproduct.fromSubtype_Ο€_assoc, CategoryTheory.Limits.biproduct.fromSubtype_eq_lift, Finset.univ_val_map_subtype_restrict, CategoryTheory.Limits.biproduct.ΞΉ_fromSubtype_assoc, CategoryTheory.Limits.biproduct.toSubtype_eq_desc, CategoryTheory.Limits.biproduct.ΞΉ_toSubtype_subtype_assoc, CategoryTheory.Limits.biproduct.fromSubtype_toSubtype, CategoryTheory.Limits.biproduct.ΞΉ_toSubtype, CategoryTheory.Limits.biproduct.ΞΉ_toSubtype_assoc, CategoryTheory.Limits.biproduct.toSubtype_fromSubtype_assoc, CategoryTheory.Limits.biproduct.ΞΉ_toSubtype_subtype, CategoryTheory.Limits.cokernelCoforkBiproductFromSubtype_cocone, CategoryTheory.Limits.biproduct.toSubtype_Ο€, CategoryTheory.Limits.cokernelBiproductFromSubtypeIso_inv, CategoryTheory.Limits.instHasKernelToSubtype, CategoryTheory.Limits.kernelForkBiproductToSubtype_isLimit, CategoryTheory.Limits.kernelBiproductToSubtypeIso_inv, restrict_def, CategoryTheory.Limits.biproduct.ΞΉ_fromSubtype

Theorems

NameKindAssumesProvesValidatesDepends On
coe_eq_iff πŸ“–β€”β€”β€”β€”β€”
coe_eq_of_eq_mk πŸ“–β€”β€”β€”β€”β€”
coe_eta πŸ“–β€”β€”β€”β€”β€”
coe_inj πŸ“–β€”β€”β€”β€”coe_injective
coe_injective πŸ“–β€”β€”β€”β€”β€”
coe_mk πŸ“–β€”β€”β€”β€”β€”
coe_ne_coe πŸ“–β€”β€”β€”β€”coe_injective
coe_prop πŸ“–mathematicalβ€”Set
Set.instMembership
β€”prop
coind_coe πŸ“–mathematicalβ€”coindβ€”β€”
coind_injective πŸ“–mathematicalβ€”coindβ€”β€”
equiv_iff πŸ“–mathematicalβ€”instHasEquiv_mathlibβ€”β€”
equivalence πŸ“–mathematicalβ€”instHasEquiv_mathlibβ€”refl
symm
trans
exists' πŸ“–β€”β€”β€”β€”β€”
ext_iff_val πŸ“–β€”β€”β€”β€”β€”
ext_val πŸ“–β€”β€”β€”β€”β€”
forall' πŸ“–β€”β€”β€”β€”β€”
heq_iff_coe_eq πŸ“–β€”β€”β€”β€”β€”
heq_iff_coe_heq πŸ“–β€”β€”β€”β€”β€”
map_coe πŸ“–mathematicalβ€”mapβ€”β€”
map_comp πŸ“–mathematicalβ€”mapβ€”β€”
map_def πŸ“–mathematicalβ€”map
prop
β€”β€”
map_eq πŸ“–mathematicalβ€”mapβ€”β€”
map_id πŸ“–mathematicalβ€”mapβ€”β€”
map_injective πŸ“–mathematicalβ€”mapβ€”coind_injective
coe_injective
map_involutive πŸ“–mathematicalFunction.Involutivemapβ€”β€”
map_ne πŸ“–β€”β€”β€”β€”Iff.not
map_eq
mk_eq_mk πŸ“–β€”β€”β€”β€”β€”
prop πŸ“–β€”β€”β€”β€”β€”
refl πŸ“–mathematicalβ€”instHasEquiv_mathlibβ€”β€”
restrict_apply πŸ“–mathematicalβ€”restrictβ€”β€”
restrict_def πŸ“–mathematicalβ€”restrictβ€”β€”
restrict_injective πŸ“–mathematicalβ€”restrictβ€”coe_injective
surjective_restrict πŸ“–mathematicalβ€”restrictβ€”β€”
trans πŸ“–β€”instHasEquiv_mathlibβ€”β€”β€”
val_inj πŸ“–β€”β€”β€”β€”β€”
val_injective πŸ“–β€”β€”β€”β€”coe_injective
val_prop πŸ“–mathematicalβ€”Set
Set.instMembership
β€”prop

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
exists_eq_subtype_mk_iff πŸ“–β€”β€”β€”β€”Subtype.coe_eq_iff
exists_subtype_mk_eq_iff πŸ“–β€”β€”β€”β€”β€”

---

← Back to Index