Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Data/Sum/Basic.lean

Statistics

MetricCount
Definitionsinβ‚€, in₁, inβ‚‚
3
TheoremssumMap, sumElim, sumMap, sumMap, inl_injective, inr_injective, exists_of_isLeft_left, exists_of_isLeft_right, exists_of_isRight_left, exists_of_isRight_right, isLeft_congr, isLeft_left, isLeft_right, isRight_congr, isRight_left, isRight_right, elim_injective, elim_swap, elim_update_left, elim_update_right, eq_left_iff_getLeft_eq, eq_right_iff_getRight_eq, exists_sum, getLeft_eq_getLeft?, getRight_eq_getRight?, inl_injective, inr_injective, isSome_getLeft?_iff_isLeft, isSome_getRight?_iff_isRight, liftRel_iff, map_bijective, map_injective, map_surjective, rec_update_left, rec_update_right, sum_rec_congr, swap_leftInverse, swap_rightInverse, update_elim_inl, update_elim_inr, update_inl_apply_inl, update_inl_apply_inl', update_inl_apply_inr, update_inl_comp_inl, update_inl_comp_inr, update_inr_apply_inl, update_inr_apply_inr, update_inr_apply_inr', update_inr_comp_inl, update_inr_comp_inr, not_isLeft_and_isRight
51
Total54

Function.Bijective

Theorems

NameKindAssumesProvesValidatesDepends On
sumMap πŸ“–β€”Function.Bijectiveβ€”β€”Function.Injective.sumMap
injective
Function.Surjective.sumMap
surjective

Function.Injective

Theorems

NameKindAssumesProvesValidatesDepends On
sumElim πŸ“–β€”β€”β€”β€”β€”
sumMap πŸ“–β€”β€”β€”β€”β€”

Function.Surjective

Theorems

NameKindAssumesProvesValidatesDepends On
sumMap πŸ“–β€”β€”β€”β€”β€”

PSum

Theorems

NameKindAssumesProvesValidatesDepends On
inl_injective πŸ“–β€”β€”β€”β€”β€”
inr_injective πŸ“–β€”β€”β€”β€”β€”

Sum

Theorems

NameKindAssumesProvesValidatesDepends On
elim_injective πŸ“–β€”β€”β€”β€”inl_injective
inr_injective
Function.Injective.sumElim
elim_swap πŸ“–β€”β€”β€”β€”β€”
elim_update_left πŸ“–mathematicalβ€”Function.updateβ€”rec_update_left
elim_update_right πŸ“–mathematicalβ€”Function.updateβ€”rec_update_right
eq_left_iff_getLeft_eq πŸ“–β€”β€”β€”β€”β€”
eq_right_iff_getRight_eq πŸ“–β€”β€”β€”β€”β€”
exists_sum πŸ“–β€”β€”β€”β€”not_forall_not
getLeft_eq_getLeft? πŸ“–β€”β€”β€”β€”β€”
getRight_eq_getRight? πŸ“–β€”β€”β€”β€”β€”
inl_injective πŸ“–β€”β€”β€”β€”β€”
inr_injective πŸ“–β€”β€”β€”β€”β€”
isSome_getLeft?_iff_isLeft πŸ“–β€”β€”β€”β€”β€”
isSome_getRight?_iff_isRight πŸ“–β€”β€”β€”β€”β€”
liftRel_iff πŸ“–β€”β€”β€”β€”β€”
map_bijective πŸ“–mathematicalβ€”Function.Bijectiveβ€”Iff.and
map_injective
map_surjective
map_injective πŸ“–β€”β€”β€”β€”Function.Injective.of_comp
inl_injective
inr_injective
Function.Injective.sumMap
map_surjective πŸ“–β€”β€”β€”β€”inl_injective
inr_injective
Function.Surjective.sumMap
rec_update_left πŸ“–mathematicalβ€”Function.updateβ€”Function.rec_update
inl_injective
rec_update_right πŸ“–mathematicalβ€”Function.updateβ€”Function.rec_update
inr_injective
sum_rec_congr πŸ“–β€”β€”β€”β€”β€”
swap_leftInverse πŸ“–β€”β€”β€”β€”β€”
swap_rightInverse πŸ“–β€”β€”β€”β€”β€”
update_elim_inl πŸ“–mathematicalβ€”Function.updateβ€”Function.update_eq_iff
Function.update_self
Function.update_of_ne
update_elim_inr πŸ“–mathematicalβ€”Function.updateβ€”Function.update_eq_iff
Function.update_self
Function.update_of_ne
update_inl_apply_inl πŸ“–mathematicalβ€”Function.updateβ€”β€”
update_inl_apply_inl' πŸ“–mathematicalβ€”Function.updateβ€”Function.update_apply_of_injective
inl_injective
update_inl_apply_inr πŸ“–mathematicalβ€”Function.updateβ€”Function.update_of_ne
update_inl_comp_inl πŸ“–mathematicalβ€”Function.updateβ€”Function.update_comp_eq_of_injective
inl_injective
update_inl_comp_inr πŸ“–mathematicalβ€”Function.updateβ€”Function.update_comp_eq_of_forall_ne
update_inr_apply_inl πŸ“–mathematicalβ€”Function.updateβ€”Function.update_of_ne
update_inr_apply_inr πŸ“–mathematicalβ€”Function.updateβ€”update_inr_comp_inr
update_inr_apply_inr' πŸ“–mathematicalβ€”Function.updateβ€”Function.update_apply_of_injective
inr_injective
update_inr_comp_inl πŸ“–mathematicalβ€”Function.updateβ€”Function.update_comp_eq_of_forall_ne
update_inr_comp_inr πŸ“–mathematicalβ€”Function.updateβ€”Function.update_comp_eq_of_injective
inr_injective

Sum.LiftRel

Theorems

NameKindAssumesProvesValidatesDepends On
exists_of_isLeft_left πŸ“–β€”β€”β€”β€”β€”
exists_of_isLeft_right πŸ“–β€”β€”β€”β€”exists_of_isLeft_left
isLeft_congr
exists_of_isRight_left πŸ“–β€”β€”β€”β€”β€”
exists_of_isRight_right πŸ“–β€”β€”β€”β€”exists_of_isRight_left
isRight_congr
isLeft_congr πŸ“–β€”β€”β€”β€”β€”
isLeft_left πŸ“–β€”β€”β€”β€”β€”
isLeft_right πŸ“–β€”β€”β€”β€”β€”
isRight_congr πŸ“–β€”β€”β€”β€”β€”
isRight_left πŸ“–β€”β€”β€”β€”β€”
isRight_right πŸ“–β€”β€”β€”β€”β€”

Sum3

Definitions

NameCategoryTheorems
inβ‚€ πŸ“–CompOp
12 mathmath: SimpleGraph.TripartiteFromTriangles.Graph.inβ‚€β‚‚_iff', SimpleGraph.TripartiteFromTriangles.rel_iff, SimpleGraph.TripartiteFromTriangles.Graph.in₀₁_iff', SimpleGraph.TripartiteFromTriangles.Graph.in₁₀_iff, SimpleGraph.TripartiteFromTriangles.graph_triple, SimpleGraph.TripartiteFromTriangles.Graph.inβ‚€β‚‚_iff, SimpleGraph.TripartiteFromTriangles.Graph.inβ‚‚β‚€_iff', SimpleGraph.TripartiteFromTriangles.Graph.in₀₁_iff, SimpleGraph.TripartiteFromTriangles.Graph.inβ‚‚β‚€_iff, SimpleGraph.TripartiteFromTriangles.Graph.in₁₀_iff', SimpleGraph.TripartiteFromTriangles.toTriangle_apply, SimpleGraph.TripartiteFromTriangles.Graph.not_inβ‚€β‚€
in₁ πŸ“–CompOp
12 mathmath: SimpleGraph.TripartiteFromTriangles.rel_iff, SimpleGraph.TripartiteFromTriangles.Graph.in₀₁_iff', SimpleGraph.TripartiteFromTriangles.Graph.in₂₁_iff', SimpleGraph.TripartiteFromTriangles.Graph.in₁₀_iff, SimpleGraph.TripartiteFromTriangles.graph_triple, SimpleGraph.TripartiteFromTriangles.Graph.in₁₂_iff', SimpleGraph.TripartiteFromTriangles.Graph.in₀₁_iff, SimpleGraph.TripartiteFromTriangles.Graph.in₁₀_iff', SimpleGraph.TripartiteFromTriangles.Graph.in₁₂_iff, SimpleGraph.TripartiteFromTriangles.toTriangle_apply, SimpleGraph.TripartiteFromTriangles.Graph.not_in₁₁, SimpleGraph.TripartiteFromTriangles.Graph.in₂₁_iff
inβ‚‚ πŸ“–CompOp
12 mathmath: SimpleGraph.TripartiteFromTriangles.Graph.inβ‚€β‚‚_iff', SimpleGraph.TripartiteFromTriangles.rel_iff, SimpleGraph.TripartiteFromTriangles.Graph.in₂₁_iff', SimpleGraph.TripartiteFromTriangles.graph_triple, SimpleGraph.TripartiteFromTriangles.Graph.inβ‚€β‚‚_iff, SimpleGraph.TripartiteFromTriangles.Graph.in₁₂_iff', SimpleGraph.TripartiteFromTriangles.Graph.inβ‚‚β‚€_iff', SimpleGraph.TripartiteFromTriangles.Graph.not_inβ‚‚β‚‚, SimpleGraph.TripartiteFromTriangles.Graph.inβ‚‚β‚€_iff, SimpleGraph.TripartiteFromTriangles.Graph.in₁₂_iff, SimpleGraph.TripartiteFromTriangles.toTriangle_apply, SimpleGraph.TripartiteFromTriangles.Graph.in₂₁_iff

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
not_isLeft_and_isRight πŸ“–β€”β€”β€”β€”β€”

---

← Back to Index