Documentation Verification Report

Order

πŸ“ Source: Mathlib/Data/Sum/Order.lean

Statistics

MetricCount
DefinitionsemptySumLex, sumAssoc, sumComm, sumCongr, sumDualDistrib, sumLexAssoc, sumLexCongr, sumLexDualAntidistrib, sumLexEmpty, LE, LT, boundedOrder, linearOrder, orderBot, orderTop, partialOrder, preorder, toLexRelIsoLE, toLexRelIsoLT, Β«term_βŠ•β‚—_Β», inlβ‚—, inrβ‚—, instLESum, instLTSum, instPartialOrder, instPreorderSum, orderIsoPUnitSumLex, orderIsoSumLexPUnit
28
TheoremsemptySumLex_apply_inr, sumAssoc_apply_inl_inl, sumAssoc_apply_inl_inr, sumAssoc_apply_inr, sumAssoc_symm_apply_inl, sumAssoc_symm_apply_inr_inl, sumAssoc_symm_apply_inr_inr, sumComm_apply, sumComm_symm, sumCongr_apply, sumCongr_refl, sumCongr_symm, sumCongr_trans, sumDualDistrib_inl, sumDualDistrib_inr, sumDualDistrib_symm_inl, sumDualDistrib_symm_inr, sumLexAssoc_apply_inl_inl, sumLexAssoc_apply_inl_inr, sumLexAssoc_apply_inr, sumLexAssoc_symm_apply_inl, sumLexAssoc_symm_apply_inr_inl, sumLexAssoc_symm_apply_inr_inr, sumLexCongr_apply, sumLexCongr_refl, sumLexCongr_symm, sumLexCongr_trans, sumLexDualAntidistrib_inl, sumLexDualAntidistrib_inr, sumLexDualAntidistrib_symm_inl, sumLexDualAntidistrib_symm_inr, sumLexEmpty_apply_inl, denselyOrdered_of_noMaxOrder, denselyOrdered_of_noMinOrder, inl_bot, inl_le_inl_iff, inl_le_inr, inl_lt_inl_iff, inl_lt_inr, inl_mono, inl_strictMono, inr_le_inr_iff, inr_lt_inr_iff, inr_mono, inr_strictMono, inr_top, le_def, lt_def, noMaxOrder, noMaxOrder_of_nonempty, noMinOrder, noMinOrder_of_nonempty, not_inr_le_inl, not_inr_lt_inl, toLexRelIsoLE_coe, toLexRelIsoLE_symm_coe, toLexRelIsoLT_coe, toLexRelIsoLT_symm_coe, toLex_le_toLex, toLex_lt_toLex, toLex_mono, toLex_strictMono, refl, trans, denselyOrdered, denselyOrdered_iff, inl_le_inl_iff, inl_lt_inl_iff, inl_mono, inl_strictMono, inr_le_inr_iff, inr_lt_inr_iff, inr_mono, inr_strictMono, instAntisymmLex_mathlib, instAntisymmLiftRel_mathlib, instIrreflLex_mathlib, instIrreflLiftRel_mathlib, instIsTransLex, instIsTransLiftRel, instIsWellOrderLex, instReflLex_mathlib, instReflLiftRel_mathlib, instTotalLex_mathlib, instTrichotomousLex_mathlib, le_def, lt_def, noMaxOrder, noMaxOrder_iff, noMinOrder, noMinOrder_iff, not_inl_le_inr, not_inl_lt_inr, not_inr_le_inl, not_inr_lt_inl, swap_le_swap_iff, swap_lt_swap_iff, orderIsoPUnitSumLex_bot, orderIsoPUnitSumLex_symm_inl, orderIsoPUnitSumLex_symm_inr, orderIsoPUnitSumLex_toLex, orderIsoSumLexPUnit_symm_inl, orderIsoSumLexPUnit_symm_inr, orderIsoSumLexPUnit_toLex, orderIsoSumLexPUnit_top
105
Total133

OrderIso

Definitions

NameCategoryTheorems
emptySumLex πŸ“–CompOp
1 mathmath: emptySumLex_apply_inr
sumAssoc πŸ“–CompOp
6 mathmath: sumAssoc_apply_inl_inl, sumAssoc_apply_inr, sumAssoc_symm_apply_inr_inl, sumAssoc_symm_apply_inr_inr, sumAssoc_apply_inl_inr, sumAssoc_symm_apply_inl
sumComm πŸ“–CompOp
2 mathmath: sumComm_symm, sumComm_apply
sumCongr πŸ“–CompOp
4 mathmath: sumCongr_apply, sumCongr_symm, sumCongr_trans, sumCongr_refl
sumDualDistrib πŸ“–CompOp
4 mathmath: sumDualDistrib_symm_inl, sumDualDistrib_inl, sumDualDistrib_symm_inr, sumDualDistrib_inr
sumLexAssoc πŸ“–CompOp
6 mathmath: sumLexAssoc_symm_apply_inr_inr, sumLexAssoc_symm_apply_inr_inl, sumLexAssoc_apply_inl_inl, sumLexAssoc_apply_inr, sumLexAssoc_symm_apply_inl, sumLexAssoc_apply_inl_inr
sumLexCongr πŸ“–CompOp
4 mathmath: sumLexCongr_trans, sumLexCongr_apply, sumLexCongr_refl, sumLexCongr_symm
sumLexDualAntidistrib πŸ“–CompOp
4 mathmath: sumLexDualAntidistrib_symm_inl, sumLexDualAntidistrib_symm_inr, sumLexDualAntidistrib_inr, sumLexDualAntidistrib_inl
sumLexEmpty πŸ“–CompOp
1 mathmath: sumLexEmpty_apply_inl

Theorems

NameKindAssumesProvesValidatesDepends On
emptySumLex_apply_inr πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Lex
Sum.Lex.LE
instFunLikeOrderIso
emptySumLex
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
sumAssoc_apply_inl_inl πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Sum.instLESum
instFunLikeOrderIso
sumAssoc
β€”β€”
sumAssoc_apply_inl_inr πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Sum.instLESum
instFunLikeOrderIso
sumAssoc
β€”β€”
sumAssoc_apply_inr πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Sum.instLESum
instFunLikeOrderIso
sumAssoc
β€”β€”
sumAssoc_symm_apply_inl πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Sum.instLESum
instFunLikeOrderIso
symm
sumAssoc
β€”β€”
sumAssoc_symm_apply_inr_inl πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Sum.instLESum
instFunLikeOrderIso
symm
sumAssoc
β€”β€”
sumAssoc_symm_apply_inr_inr πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Sum.instLESum
instFunLikeOrderIso
symm
sumAssoc
β€”β€”
sumComm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Sum.instLESum
RelIso.instFunLike
sumComm
β€”β€”
sumComm_symm πŸ“–mathematicalβ€”symm
Sum.instLESum
sumComm
β€”β€”
sumCongr_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Sum.instLESum
RelIso.instFunLike
sumCongr
OrderIso
EquivLike.toFunLike
instEquivLike
β€”β€”
sumCongr_refl πŸ“–mathematicalβ€”sumCongr
refl
Sum.instLESum
β€”ext
sumCongr_symm πŸ“–mathematicalβ€”symm
Sum.instLESum
sumCongr
β€”β€”
sumCongr_trans πŸ“–mathematicalβ€”trans
Sum.instLESum
sumCongr
β€”ext
sumDualDistrib_inl πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
OrderDual
OrderDual.instLE
Sum.instLESum
instFunLikeOrderIso
sumDualDistrib
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
sumDualDistrib_inr πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
OrderDual
OrderDual.instLE
Sum.instLESum
instFunLikeOrderIso
sumDualDistrib
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
sumDualDistrib_symm_inl πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
OrderDual
Sum.instLESum
OrderDual.instLE
instFunLikeOrderIso
symm
sumDualDistrib
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
sumDualDistrib_symm_inr πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
OrderDual
Sum.instLESum
OrderDual.instLE
instFunLikeOrderIso
symm
sumDualDistrib
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
sumLexAssoc_apply_inl_inl πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Lex
Sum.Lex.LE
instFunLikeOrderIso
sumLexAssoc
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
sumLexAssoc_apply_inl_inr πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Lex
Sum.Lex.LE
instFunLikeOrderIso
sumLexAssoc
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
sumLexAssoc_apply_inr πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Lex
Sum.Lex.LE
instFunLikeOrderIso
sumLexAssoc
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
sumLexAssoc_symm_apply_inl πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Lex
Sum.Lex.LE
instFunLikeOrderIso
symm
sumLexAssoc
β€”β€”
sumLexAssoc_symm_apply_inr_inl πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Lex
Sum.Lex.LE
instFunLikeOrderIso
symm
sumLexAssoc
β€”β€”
sumLexAssoc_symm_apply_inr_inr πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Lex
Sum.Lex.LE
instFunLikeOrderIso
symm
sumLexAssoc
β€”β€”
sumLexCongr_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Lex
Sum.Lex.LE
RelIso.instFunLike
sumLexCongr
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
OrderIso
instEquivLike
ofLex
β€”β€”
sumLexCongr_refl πŸ“–mathematicalβ€”sumLexCongr
refl
Lex
Sum.Lex.LE
β€”ext
sumLexCongr_symm πŸ“–mathematicalβ€”symm
Lex
Sum.Lex.LE
sumLexCongr
β€”β€”
sumLexCongr_trans πŸ“–mathematicalβ€”trans
Lex
Sum.Lex.LE
sumLexCongr
β€”ext
sumLexDualAntidistrib_inl πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
OrderDual
Lex
OrderDual.instLE
Sum.Lex.LE
instFunLikeOrderIso
sumLexDualAntidistrib
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
sumLexDualAntidistrib_inr πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
OrderDual
Lex
OrderDual.instLE
Sum.Lex.LE
instFunLikeOrderIso
sumLexDualAntidistrib
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
sumLexDualAntidistrib_symm_inl πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Lex
OrderDual
Sum.Lex.LE
OrderDual.instLE
instFunLikeOrderIso
symm
sumLexDualAntidistrib
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
sumLexDualAntidistrib_symm_inr πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Lex
OrderDual
Sum.Lex.LE
OrderDual.instLE
instFunLikeOrderIso
symm
sumLexDualAntidistrib
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”β€”
sumLexEmpty_apply_inl πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Lex
Sum.Lex.LE
instFunLikeOrderIso
sumLexEmpty
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”

Sum

Definitions

NameCategoryTheorems
inlβ‚— πŸ“–CompOp
18 mathmath: Lex.Ico_inl_inl, Lex.Ioo_inl_inr, Lex.Ioo_inr_inl, Lex.Icc_inl_inl, Lex.Ici_inl, Lex.Ioc_inl_inl, Lex.Icc_inr_inl, Lex.Ioc_inl_inr, Lex.Iio_inl, Lex.Ioc_inr_inl, Lex.Ioi_inl, Lex.Ioo_inl_inl, Lex.Iic_inl, Lex.Ico_inr_inl, Lex.Ico_inl_inr, Lex.inl_inf, Lex.Icc_inl_inr, Lex.inl_sup
inrβ‚— πŸ“–CompOp
18 mathmath: Lex.Icc_inr_inr, Lex.Ico_inr_inr, Lex.Ioo_inl_inr, Lex.Ioo_inr_inl, Lex.Iic_inr, Lex.Ioo_inr_inr, Lex.Ioi_inr, Lex.Icc_inr_inl, Lex.Ioc_inl_inr, Lex.Ioc_inr_inl, Lex.inr_inf, Lex.Ioc_inr_inr, Lex.Ici_inr, Lex.Ico_inr_inl, Lex.Ico_inl_inr, Lex.Iio_inr, Lex.inr_sup, Lex.Icc_inl_inr
instLESum πŸ“–CompOp
22 mathmath: OrderIso.sumAssoc_apply_inl_inl, OrderIso.sumCongr_apply, OrderIso.sumCongr_symm, inr_le_inr_iff, OrderIso.sumComm_symm, OrderIso.sumDualDistrib_symm_inl, OrderIso.sumAssoc_apply_inr, le_def, not_inr_le_inl, OrderIso.sumAssoc_symm_apply_inr_inl, OrderIso.sumCongr_trans, OrderIso.sumComm_apply, OrderIso.sumDualDistrib_inl, OrderIso.sumDualDistrib_symm_inr, OrderIso.sumAssoc_symm_apply_inr_inr, OrderIso.sumDualDistrib_inr, inl_le_inl_iff, swap_le_swap_iff, OrderIso.sumAssoc_apply_inl_inr, OrderIso.sumAssoc_symm_apply_inl, OrderIso.sumCongr_refl, not_inl_le_inr
instLTSum πŸ“–CompOp
12 mathmath: noMinOrder, lt_def, swap_lt_swap_iff, denselyOrdered, inr_lt_inr_iff, not_inr_lt_inl, noMinOrder_iff, noMaxOrder, noMaxOrder_iff, denselyOrdered_iff, not_inl_lt_inr, inl_lt_inl_iff
instPartialOrder πŸ“–CompOpβ€”
instPreorderSum πŸ“–CompOp
30 mathmath: Ico_inl_inl, Iio_inr, Ioc_inl_inr, Ici_inr, Ioo_inl_inr, Icc_inr_inr, Ioc_inr_inr, Ioi_inr, Iio_inl, Ioo_inr_inr, inl_strictMono, inl_mono, Ioo_inr_inl, Icc_inl_inr, Ioo_inl_inl, Ici_inl, Iic_inl, Ico_inr_inr, Icc_inr_inl, Iic_inr, Ico_inl_inr, inr_strictMono, Ioi_inl, Lex.toLex_strictMono, Ioc_inr_inl, Ioc_inl_inl, inr_mono, Lex.toLex_mono, Ico_inr_inl, Icc_inl_inl

Theorems

NameKindAssumesProvesValidatesDepends On
denselyOrdered πŸ“–mathematicalβ€”DenselyOrdered
instLTSum
β€”exists_between
denselyOrdered_iff πŸ“–mathematicalβ€”DenselyOrdered
instLTSum
β€”exists_between
inl_lt_inl_iff
not_inl_lt_inr
inr_lt_inr_iff
denselyOrdered
inl_le_inl_iff πŸ“–mathematicalβ€”instLESumβ€”β€”
inl_lt_inl_iff πŸ“–mathematicalβ€”instLTSumβ€”β€”
inl_mono πŸ“–mathematicalβ€”Monotone
instPreorderSum
β€”β€”
inl_strictMono πŸ“–mathematicalβ€”StrictMono
instPreorderSum
β€”β€”
inr_le_inr_iff πŸ“–mathematicalβ€”instLESumβ€”β€”
inr_lt_inr_iff πŸ“–mathematicalβ€”instLTSumβ€”β€”
inr_mono πŸ“–mathematicalβ€”Monotone
instPreorderSum
β€”β€”
inr_strictMono πŸ“–mathematicalβ€”StrictMono
instPreorderSum
β€”β€”
instAntisymmLex_mathlib πŸ“–β€”β€”β€”β€”antisymm
instAntisymmLiftRel_mathlib πŸ“–β€”β€”β€”β€”antisymm
instIrreflLex_mathlib πŸ“–β€”β€”β€”β€”irrefl
instIrreflLiftRel_mathlib πŸ“–β€”β€”β€”β€”irrefl
instIsTransLex πŸ“–mathematicalβ€”IsTransβ€”trans
instIsTransLiftRel πŸ“–mathematicalβ€”IsTransβ€”LiftRel.trans
instIsWellOrderLex πŸ“–mathematicalβ€”IsWellOrderβ€”instTrichotomousLex_mathlib
IsWellOrder.toTrichotomous
instIsTransLex
IsWellOrder.toIsTrans
IsWellFounded.wf
IsWellOrder.toIsWellFounded
instReflLex_mathlib πŸ“–β€”β€”β€”β€”refl
instReflLiftRel_mathlib πŸ“–β€”β€”β€”β€”LiftRel.refl
instTotalLex_mathlib πŸ“–β€”β€”β€”β€”total_of
instTrichotomousLex_mathlib πŸ“–β€”β€”β€”β€”β€”
le_def πŸ“–mathematicalβ€”instLESumβ€”β€”
lt_def πŸ“–mathematicalβ€”instLTSumβ€”β€”
noMaxOrder πŸ“–mathematicalβ€”NoMaxOrder
instLTSum
β€”NoMaxOrder.exists_gt
inl_lt_inl_iff
inr_lt_inr_iff
noMaxOrder_iff πŸ“–mathematicalβ€”NoMaxOrder
instLTSum
β€”NoMaxOrder.exists_gt
inl_lt_inl_iff
not_inl_lt_inr
not_inr_lt_inl
inr_lt_inr_iff
noMaxOrder
noMinOrder πŸ“–mathematicalβ€”NoMinOrder
instLTSum
β€”NoMinOrder.exists_lt
inl_lt_inl_iff
inr_lt_inr_iff
noMinOrder_iff πŸ“–mathematicalβ€”NoMinOrder
instLTSum
β€”NoMinOrder.exists_lt
inl_lt_inl_iff
not_inr_lt_inl
not_inl_lt_inr
inr_lt_inr_iff
noMinOrder
not_inl_le_inr πŸ“–mathematicalβ€”instLESumβ€”β€”
not_inl_lt_inr πŸ“–mathematicalβ€”instLTSumβ€”β€”
not_inr_le_inl πŸ“–mathematicalβ€”instLESumβ€”β€”
not_inr_lt_inl πŸ“–mathematicalβ€”instLTSumβ€”β€”
swap_le_swap_iff πŸ“–mathematicalβ€”instLESumβ€”β€”
swap_lt_swap_iff πŸ“–mathematicalβ€”instLTSumβ€”β€”

Sum.Lex

Definitions

NameCategoryTheorems
LE πŸ“–CompOp
48 mathmath: WithBot.orderIsoPUnitSumLex_symm_inl, OrderIso.sumLexIicIoi_symm_apply_of_lt, inr_le_inr_iff, WithBot.orderIsoPUnitSumLex_symm_inr, OrderIso.sumLexIioIci_symm_apply_Ici, OrderIso.sumLexAssoc_symm_apply_inr_inr, OrderIso.sumLexCongr_trans, inl_bot, OrderIso.sumLexIicIoi_symm_apply_of_le, WithTop.orderIsoSumLexPUnit_toLex, Prod.Lex.sumLexProdLexDistrib_symm_apply, toLexRelIsoLE_coe, WithTop.orderIsoSumLexPUnit_symm_inl, OrderIso.sumLexIioIci_symm_apply_Iio, toLex_le_toLex, toLexRelIsoLE_symm_coe, OrderIso.sumLexIicIoi_symm_apply_Iic, Prod.Lex.sumLexProdLexDistrib_apply, WithTop.orderIsoSumLexPUnit_top, OrderIso.sumLexCongr_apply, OrderIso.sumLexIicIoi_symm_apply_Ioi, OrderIso.sumLexIicIoi_apply_inr, OrderIso.sumLexAssoc_symm_apply_inr_inl, OrderIso.sumLexAssoc_apply_inl_inl, OrderIso.sumLexEmpty_apply_inl, OrderIso.sumLexIicIoi_apply_inl, OrderIso.sumLexCongr_refl, WithBot.orderIsoPUnitSumLex_toLex, OrderIso.emptySumLex_apply_inr, OrderIso.sumLexDualAntidistrib_symm_inl, OrderIso.sumLexIioIci_symm_apply_of_ge, OrderIso.sumLexCongr_symm, OrderIso.sumLexIioIci_apply_inl, WithTop.orderIsoSumLexPUnit_symm_inr, OrderIso.sumLexAssoc_apply_inr, not_inr_le_inl, le_def, inr_top, OrderIso.sumLexDualAntidistrib_symm_inr, OrderIso.sumLexDualAntidistrib_inr, OrderIso.sumLexDualAntidistrib_inl, OrderIso.sumLexAssoc_symm_apply_inl, OrderIso.sumLexIioIci_apply_inr, OrderIso.sumLexIioIci_symm_apply_of_lt, OrderIso.sumLexAssoc_apply_inl_inr, WithBot.orderIsoPUnitSumLex_bot, inl_le_inr, inl_le_inl_iff
LT πŸ“–CompOp
16 mathmath: noMaxOrder, noMaxOrder_of_nonempty, toLex_lt_toLex, Prod.Lex.sumLexProdLexDistrib_symm_apply, denselyOrdered_of_noMaxOrder, Prod.Lex.sumLexProdLexDistrib_apply, denselyOrdered_of_noMinOrder, inl_lt_inl_iff, lt_def, toLexRelIsoLT_coe, inl_lt_inr, toLexRelIsoLT_symm_coe, noMinOrder, inr_lt_inr_iff, noMinOrder_of_nonempty, not_inr_lt_inl
boundedOrder πŸ“–CompOpβ€”
linearOrder πŸ“–CompOp
1 mathmath: OrderType.type_lex_sum
orderBot πŸ“–CompOp
1 mathmath: inl_bot
orderTop πŸ“–CompOp
1 mathmath: inr_top
partialOrder πŸ“–CompOpβ€”
preorder πŸ“–CompOp
30 mathmath: Icc_inr_inr, Ico_inl_inl, Ico_inr_inr, Ioo_inl_inr, Ioo_inr_inl, Iic_inr, inr_strictMono, Ioo_inr_inr, Icc_inl_inl, inl_mono, Ioi_inr, Ici_inl, Ioc_inl_inl, Icc_inr_inl, Ioc_inl_inr, Iio_inl, Ioc_inr_inl, Ioc_inr_inr, Ioi_inl, Ioo_inl_inl, Iic_inl, inl_strictMono, Ici_inr, Ico_inr_inl, Ico_inl_inr, Iio_inr, inr_mono, toLex_strictMono, Icc_inl_inr, toLex_mono
toLexRelIsoLE πŸ“–CompOp
2 mathmath: toLexRelIsoLE_coe, toLexRelIsoLE_symm_coe
toLexRelIsoLT πŸ“–CompOp
2 mathmath: toLexRelIsoLT_coe, toLexRelIsoLT_symm_coe
Β«term_βŠ•β‚—_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
denselyOrdered_of_noMaxOrder πŸ“–mathematicalβ€”DenselyOrdered
Lex
LT
β€”exists_between
inl_lt_inl_iff
NoMaxOrder.exists_gt
inl_lt_inr
inr_lt_inr_iff
denselyOrdered_of_noMinOrder πŸ“–mathematicalβ€”DenselyOrdered
Lex
LT
β€”exists_between
inl_lt_inl_iff
NoMinOrder.exists_lt
inl_lt_inr
inr_lt_inr_iff
inl_bot πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
Bot.bot
OrderBot.toBot
LE
orderBot
β€”β€”
inl_le_inl_iff πŸ“–mathematicalβ€”Lex
LE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
inl_le_inr πŸ“–mathematicalβ€”Lex
LE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
inl_lt_inl_iff πŸ“–mathematicalβ€”Lex
LT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
inl_lt_inr πŸ“–mathematicalβ€”Lex
LT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
inl_mono πŸ“–mathematicalβ€”Monotone
Lex
preorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”Monotone.comp
toLex_mono
Sum.inl_mono
inl_strictMono πŸ“–mathematicalβ€”StrictMono
Lex
preorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”StrictMono.comp
toLex_strictMono
Sum.inl_strictMono
inr_le_inr_iff πŸ“–mathematicalβ€”Lex
LE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
inr_lt_inr_iff πŸ“–mathematicalβ€”Lex
LT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
inr_mono πŸ“–mathematicalβ€”Monotone
Lex
preorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”Monotone.comp
toLex_mono
Sum.inr_mono
inr_strictMono πŸ“–mathematicalβ€”StrictMono
Lex
preorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”StrictMono.comp
toLex_strictMono
Sum.inr_strictMono
inr_top πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Lex
EquivLike.toFunLike
Equiv.instEquivLike
toLex
Top.top
OrderTop.toTop
LE
orderTop
β€”β€”
le_def πŸ“–mathematicalβ€”Lex
LE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
β€”β€”
lt_def πŸ“–mathematicalβ€”Lex
LT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
β€”β€”
noMaxOrder πŸ“–mathematicalβ€”NoMaxOrder
Lex
LT
β€”NoMaxOrder.exists_gt
inl_lt_inl_iff
inr_lt_inr_iff
noMaxOrder_of_nonempty πŸ“–mathematicalβ€”NoMaxOrder
Lex
LT
β€”inl_lt_inr
NoMaxOrder.exists_gt
inr_lt_inr_iff
noMinOrder πŸ“–mathematicalβ€”NoMinOrder
Lex
LT
β€”NoMinOrder.exists_lt
inl_lt_inl_iff
inr_lt_inr_iff
noMinOrder_of_nonempty πŸ“–mathematicalβ€”NoMinOrder
Lex
LT
β€”NoMinOrder.exists_lt
inl_lt_inl_iff
inl_lt_inr
not_inr_le_inl πŸ“–mathematicalβ€”Lex
LE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
not_inr_lt_inl πŸ“–mathematicalβ€”Lex
LT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
toLexRelIsoLE_coe πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Lex
LE
RelIso.instFunLike
toLexRelIsoLE
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
toLexRelIsoLE_symm_coe πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Lex
LE
RelIso.instFunLike
RelIso.symm
toLexRelIsoLE
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
β€”β€”
toLexRelIsoLT_coe πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Lex
LT
RelIso.instFunLike
toLexRelIsoLT
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
toLexRelIsoLT_symm_coe πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Lex
LT
RelIso.instFunLike
RelIso.symm
toLexRelIsoLT
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
ofLex
β€”β€”
toLex_le_toLex πŸ“–mathematicalβ€”Lex
LE
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
toLex_lt_toLex πŸ“–mathematicalβ€”Lex
LT
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
toLex_mono πŸ“–mathematicalβ€”Monotone
Lex
Sum.instPreorderSum
preorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
toLex_strictMono πŸ“–mathematicalβ€”StrictMono
Lex
Sum.instPreorderSum
preorder
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”

Sum.LiftRel

Theorems

NameKindAssumesProvesValidatesDepends On
refl πŸ“–β€”β€”β€”β€”refl
trans πŸ“–β€”β€”β€”β€”trans

WithBot

Definitions

NameCategoryTheorems
orderIsoPUnitSumLex πŸ“–CompOp
4 mathmath: orderIsoPUnitSumLex_symm_inl, orderIsoPUnitSumLex_symm_inr, orderIsoPUnitSumLex_toLex, orderIsoPUnitSumLex_bot

Theorems

NameKindAssumesProvesValidatesDepends On
orderIsoPUnitSumLex_bot πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
WithBot
Lex
instLE
Sum.Lex.LE
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
PUnit.instBiheytingAlgebra
instFunLikeOrderIso
orderIsoPUnitSumLex
Bot.bot
bot
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
orderIsoPUnitSumLex_symm_inl πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Lex
WithBot
Sum.Lex.LE
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
PUnit.instBiheytingAlgebra
instLE
instFunLikeOrderIso
OrderIso.symm
orderIsoPUnitSumLex
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
Bot.bot
bot
β€”β€”
orderIsoPUnitSumLex_symm_inr πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Lex
WithBot
Sum.Lex.LE
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
PUnit.instBiheytingAlgebra
instLE
instFunLikeOrderIso
OrderIso.symm
orderIsoPUnitSumLex
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
some
β€”β€”
orderIsoPUnitSumLex_toLex πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
WithBot
Lex
instLE
Sum.Lex.LE
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
PUnit.instBiheytingAlgebra
instFunLikeOrderIso
orderIsoPUnitSumLex
some
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”

WithTop

Definitions

NameCategoryTheorems
orderIsoSumLexPUnit πŸ“–CompOp
4 mathmath: orderIsoSumLexPUnit_toLex, orderIsoSumLexPUnit_symm_inl, orderIsoSumLexPUnit_top, orderIsoSumLexPUnit_symm_inr

Theorems

NameKindAssumesProvesValidatesDepends On
orderIsoSumLexPUnit_symm_inl πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Lex
WithTop
Sum.Lex.LE
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
PUnit.instBiheytingAlgebra
instLE
instFunLikeOrderIso
OrderIso.symm
orderIsoSumLexPUnit
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
some
β€”β€”
orderIsoSumLexPUnit_symm_inr πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Lex
WithTop
Sum.Lex.LE
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
PUnit.instBiheytingAlgebra
instLE
instFunLikeOrderIso
OrderIso.symm
orderIsoSumLexPUnit
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
Top.top
top
β€”β€”
orderIsoSumLexPUnit_toLex πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
WithTop
Lex
instLE
Sum.Lex.LE
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
PUnit.instBiheytingAlgebra
instFunLikeOrderIso
orderIsoSumLexPUnit
some
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”
orderIsoSumLexPUnit_top πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
WithTop
Lex
instLE
Sum.Lex.LE
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
PUnit.instBiheytingAlgebra
instFunLikeOrderIso
orderIsoSumLexPUnit
Top.top
top
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toLex
β€”β€”

---

← Back to Index