Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Data/Sym/Basic.lean

Statistics

MetricCount
DefinitionsisSetoid, Sym', append, attach, cast, cons, cons', decidableMem, equivCongr, erase, fill, filterNe, hasCoe, inhabitedSym, inhabitedSym', instCoeVector, instEmptyCollectionOfNatNat, instMembership, instUnique, instZeroSym, map, mk, nil, ofVector, oneEquiv, replicate, symEquivSym', toMultiset, uniqueZero, Β«term_::_Β», Β«term_::β‚›_Β», decode, encode, instDecidableEqSym, instDecidableRelVectorEquivOfDecidableEq, symOptionSuccEquiv
36
Theoremsappend_comm, append_inj_left, append_inj_right, attach_cons, attach_map_coe, attach_mk, attach_nil, card_coe, cast_cast, cast_rfl, coe_append, coe_attach, coe_cast, coe_cons, coe_erase, coe_fill, coe_inj, coe_injective, coe_map, coe_mk, coe_nil, coe_replicate, cons_equiv_eq_equiv_cons, cons_erase, cons_inj_left, cons_inj_right, cons_of_coe_eq, cons_swap, count_coe_fill_of_ne, count_coe_fill_self_of_notMem, eq_nil_of_card_zero, eq_replicate, eq_replicate_iff, eq_replicate_of_subsingleton, equivCongr_apply, equivCongr_symm_apply, erase_cons_head, erase_mk, exists, exists_cons_of_mem, exists_eq_cons_of_succ, exists_mem, ext, ext_iff, fill_filterNe, filter_ne_fill, forall, instIsEmptySucc, instNontrivialHAddNatOfNat, instSubsingleton, map_congr, map_cons, map_id, map_id', map_injective, map_map, map_mk, map_zero, mem_append_iff, mem_attach, mem_cast, mem_coe, mem_cons, mem_cons_of_mem, mem_cons_self, mem_fill_iff, mem_map, mem_mk, mem_replicate, notMem_nil, ofVector_cons, ofVector_nil, oneEquiv_apply, replicate_right_inj, replicate_right_injective, replicate_succ, sigma_sub_ext, sound, toMultiset_zero, val_eq_coe, val_replicate, decode_encode, decode_inl, decode_inr, encode_decode, encode_of_none_mem, encode_of_none_notMem
87
Total123

List.Vector.Perm

Definitions

NameCategoryTheorems
isSetoid πŸ“–CompOpβ€”

Sym

Definitions

NameCategoryTheorems
Sym' πŸ“–CompOp
1 mathmath: cons_equiv_eq_equiv_cons
append πŸ“–CompOp
5 mathmath: append_inj_right, append_inj_left, append_comm, mem_append_iff, coe_append
attach πŸ“–CompOp
7 mathmath: SymOptionSuccEquiv.encode_of_none_notMem, attach_mk, attach_nil, attach_map_coe, attach_cons, mem_attach, coe_attach
cast πŸ“–CompOp
5 mathmath: cast_rfl, cast_cast, mem_cast, append_comm, coe_cast
cons πŸ“–CompOp
19 mathmath: cons_swap, cons_inj_right, cons_erase, cons_inj_left, mem_cons_self, cons_equiv_eq_equiv_cons, SymOptionSuccEquiv.decode_inl, attach_cons, mem_cons_of_mem, List.sym_one_eq, replicate_succ, coe_cons, map_cons, Finset.sym_succ, mem_cons, exists_cons_of_mem, exists_eq_cons_of_succ, cons_of_coe_eq, ofVector_cons
cons' πŸ“–CompOp
1 mathmath: cons_equiv_eq_equiv_cons
decidableMem πŸ“–CompOpβ€”
equivCongr πŸ“–CompOp
2 mathmath: equivCongr_apply, equivCongr_symm_apply
erase πŸ“–CompOp
5 mathmath: cons_erase, erase_mk, SymOptionSuccEquiv.encode_of_none_mem, coe_erase, erase_cons_head
fill πŸ“–CompOp
9 mathmath: fill_filterNe, count_coe_fill_self_of_notMem, mem_fill_iff, coe_fill, count_coe_fill_of_ne, filter_ne_fill, Finset.sym_fill_mem, multinomial_coe_fill_of_notMem, Finset.symInsertEquiv_symm_apply_coe
filterNe πŸ“–CompOp
5 mathmath: fill_filterNe, filter_ne_fill, Finset.sym_filterNe_mem, Finset.symInsertEquiv_apply_snd_coe, Finset.symInsertEquiv_apply_fst
hasCoe πŸ“–CompOpβ€”
inhabitedSym πŸ“–CompOpβ€”
inhabitedSym' πŸ“–CompOpβ€”
instCoeVector πŸ“–CompOpβ€”
instEmptyCollectionOfNatNat πŸ“–CompOp
1 mathmath: Finset.sym_zero
instMembership πŸ“–CompOp
16 mathmath: mem_map, mem_fill_iff, mem_mk, mem_replicate, attach_nil, attach_map_coe, mem_cast, mem_cons_self, mem_append_iff, notMem_nil, exists_mem, attach_cons, mem_coe, mem_attach, mem_cons, coe_attach
instUnique πŸ“–CompOpβ€”
instZeroSym πŸ“–CompOp
2 mathmath: toMultiset_zero, map_zero
map πŸ“–CompOp
18 mathmath: SymOptionSuccEquiv.encode_of_none_notMem, map_id, mem_map, SymOptionSuccEquiv.decode_inr, equivCongr_apply, attach_map_coe, map_id', map_injective, List.sym_map, map_zero, Nat.Partition.ofSym_map, coe_map, equivCongr_symm_apply, map_congr, attach_cons, map_map, map_cons, map_mk
mk πŸ“–CompOpβ€”
nil πŸ“–CompOp
6 mathmath: ofVector_nil, attach_nil, eq_nil_of_card_zero, notMem_nil, coe_nil, List.sym_one_eq
ofVector πŸ“–CompOp
4 mathmath: ofVector_nil, cons_of_coe_eq, sound, ofVector_cons
oneEquiv πŸ“–CompOp
1 mathmath: oneEquiv_apply
replicate πŸ“–CompOp
12 mathmath: eq_replicate_iff, Finset.replicate_mem_sym, coe_fill, mem_replicate, Finset.sym_singleton, eq_replicate_of_subsingleton, replicate_right_injective, replicate_succ, replicate_right_inj, coe_replicate, eq_replicate, val_replicate
symEquivSym' πŸ“–CompOp
1 mathmath: cons_equiv_eq_equiv_cons
toMultiset πŸ“–CompOp
30 mathmath: toMultiset_zero, val_eq_coe, coe_equivNatSumOfFintype_apply_apply, coe_equivNatSum_apply_apply, count_coe_fill_self_of_notMem, coe_equivNatSum_symm_apply, Finset.map_sym_eq_piAntidiag, DividedPowers.dpow_sum', coe_equivNatSumOfFintype_symm_apply, Finset.sum_count_of_mem_sym, coe_mk, coe_fill, coe_inj, norm_iteratedFDerivWithin_prod_le, DividedPowers.dpow_sum, count_coe_fill_of_ne, coe_map, coe_erase, norm_iteratedFDeriv_prod_le, multinomial_coe_fill_of_notMem, coe_injective, coe_nil, coe_cons, coe_cast, mem_coe, coe_replicate, coe_append, ext_iff, coe_attach, card_coe
uniqueZero πŸ“–CompOpβ€”
Β«term_::_Β» πŸ“–CompOpβ€”
Β«term_::β‚›_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
append_comm πŸ“–mathematicalβ€”append
DFunLike.coe
Equiv
Sym
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
Nat.instAddCommSemigroup
EquivLike.toFunLike
Equiv.instEquivLike
cast
add_comm
β€”add_comm
cast_rfl
append_inj_left πŸ“–mathematicalβ€”appendβ€”AddRightCancelSemigroup.toIsRightCancelAdd
append_inj_right πŸ“–mathematicalβ€”appendβ€”AddLeftCancelSemigroup.toIsLeftCancelAdd
attach_cons πŸ“–mathematicalβ€”attach
cons
Sym
instMembership
mem_cons_self
map
mem_cons_of_mem
Subtype.prop
β€”coe_injective
mem_cons_self
mem_cons_of_mem
Subtype.prop
Multiset.attach_cons
attach_map_coe πŸ“–mathematicalβ€”map
Sym
instMembership
attach
β€”coe_injective
Multiset.attach_map_val
attach_mk πŸ“–mathematicalMultiset.cardattach
Multiset
Multiset.instMembership
Multiset.attach
Multiset.card_attach
β€”β€”
attach_nil πŸ“–mathematicalβ€”attach
nil
Sym
instMembership
β€”β€”
card_coe πŸ“–mathematicalβ€”Multiset.card
toMultiset
β€”Subtype.prop
cast_cast πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Sym
EquivLike.toFunLike
Equiv.instEquivLike
cast
β€”β€”
cast_rfl πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Sym
EquivLike.toFunLike
Equiv.instEquivLike
cast
β€”β€”
coe_append πŸ“–mathematicalβ€”toMultiset
append
Multiset
Multiset.instAdd
β€”β€”
coe_attach πŸ“–mathematicalβ€”toMultiset
Sym
instMembership
attach
Multiset.attach
β€”β€”
coe_cast πŸ“–mathematicalβ€”toMultiset
DFunLike.coe
Equiv
Sym
EquivLike.toFunLike
Equiv.instEquivLike
cast
β€”β€”
coe_cons πŸ“–mathematicalβ€”toMultiset
cons
Multiset.cons
β€”β€”
coe_erase πŸ“–mathematicalSym
instMembership
toMultiset
erase
Multiset.erase
β€”β€”
coe_fill πŸ“–mathematicalβ€”toMultiset
fill
Multiset
Multiset.instAdd
replicate
β€”β€”
coe_inj πŸ“–mathematicalβ€”toMultisetβ€”coe_injective
coe_injective πŸ“–mathematicalβ€”Sym
Multiset
toMultiset
β€”Subtype.coe_injective
coe_map πŸ“–mathematicalβ€”toMultiset
map
Multiset.map
β€”β€”
coe_mk πŸ“–mathematicalMultiset.cardtoMultisetβ€”β€”
coe_nil πŸ“–mathematicalβ€”toMultiset
nil
Multiset
Multiset.instZero
β€”β€”
coe_replicate πŸ“–mathematicalβ€”toMultiset
replicate
Multiset.replicate
β€”β€”
cons_equiv_eq_equiv_cons πŸ“–mathematicalβ€”cons'
DFunLike.coe
Equiv
Sym
Sym'
EquivLike.toFunLike
Equiv.instEquivLike
symEquivSym'
cons
β€”β€”
cons_erase πŸ“–mathematicalSym
instMembership
cons
erase
β€”coe_injective
Multiset.cons_erase
cons_inj_left πŸ“–mathematicalβ€”consβ€”Multiset.cons_inj_left
cons_inj_right πŸ“–mathematicalβ€”consβ€”Multiset.cons_inj_right
cons_of_coe_eq πŸ“–mathematicalβ€”cons
ofVector
List.Vector.cons
β€”β€”
cons_swap πŸ“–mathematicalβ€”consβ€”Multiset.cons_swap
count_coe_fill_of_ne πŸ“–mathematicalβ€”Multiset.count
toMultiset
fill
β€”Multiset.count_add
Multiset.count_eq_zero_of_notMem
add_zero
count_coe_fill_self_of_notMem πŸ“–mathematicalSym
instMembership
Multiset.count
toMultiset
fill
β€”Multiset.count_add
Multiset.count_eq_zero_of_notMem
Multiset.count_replicate_self
zero_add
eq_nil_of_card_zero πŸ“–mathematicalβ€”nilβ€”Multiset.card_eq_zero
eq_replicate πŸ“–mathematicalβ€”replicateβ€”Multiset.eq_replicate
Subtype.prop
eq_replicate_iff πŸ“–mathematicalβ€”replicateβ€”val_replicate
Multiset.eq_replicate
eq_replicate_of_subsingleton πŸ“–mathematicalβ€”replicateβ€”eq_replicate
equivCongr_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Sym
EquivLike.toFunLike
Equiv.instEquivLike
equivCongr
map
β€”β€”
equivCongr_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Sym
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equivCongr
map
β€”β€”
erase_cons_head πŸ“–mathematicalSym
instMembership
cons
mem_cons_self
eraseβ€”coe_injective
Multiset.erase_cons_head
erase_mk πŸ“–mathematicalMultiset.card
Multiset
Multiset.instMembership
erase
Multiset.erase
β€”β€”
exists πŸ“–β€”β€”β€”β€”β€”
exists_cons_of_mem πŸ“–mathematicalSym
instMembership
consβ€”Multiset.exists_cons_of_mem
AddRightCancelSemigroup.toIsRightCancelAdd
Multiset.card_cons
exists_eq_cons_of_succ πŸ“–mathematicalβ€”consβ€”exists_mem
cons_erase
exists_mem πŸ“–mathematicalβ€”Sym
instMembership
β€”Multiset.card_pos_iff_exists_mem
ext πŸ“–β€”toMultisetβ€”β€”coe_injective
ext_iff πŸ“–mathematicalβ€”toMultisetβ€”ext
fill_filterNe πŸ“–mathematicalβ€”fill
Sym
filterNe
β€”ext
coe_fill
filterNe.eq_1
val_eq_coe
Multiset.ext'
Multiset.count_add
Multiset.count_filter
coe_replicate
Multiset.count_replicate
eq_or_ne
zero_add
add_zero
filter_ne_fill πŸ“–mathematicalSym
instMembership
filterNe
fill
β€”sigma_sub_ext
filterNe.eq_1
val_eq_coe
coe_fill
Multiset.filter_add
Multiset.filter_eq_self
add_eq_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
Multiset.eq_zero_iff_forall_notMem
mem_replicate
mem_coe
Multiset.mem_filter
forall πŸ“–β€”β€”β€”β€”β€”
instIsEmptySucc πŸ“–mathematicalβ€”IsEmpty
Sym
β€”exists_mem
instNontrivialHAddNatOfNat πŸ“–mathematicalβ€”Nontrivial
Sym
β€”Function.Injective.nontrivial
replicate_right_injective
instSubsingleton πŸ“–mathematicalβ€”Symβ€”Unique.instSubsingleton
exists_mem
eq_replicate_of_subsingleton
map_congr πŸ“–mathematicalβ€”mapβ€”Multiset.map_congr
map_cons πŸ“–mathematicalβ€”map
cons
β€”ext
Multiset.map_cons
map_id πŸ“–mathematicalβ€”mapβ€”ext
Multiset.map_congr
Multiset.map_id'
map_id' πŸ“–mathematicalβ€”mapβ€”ext
Multiset.map_id'
map_injective πŸ“–mathematicalβ€”Sym
map
β€”coe_injective
Multiset.map_injective
map_map πŸ“–mathematicalβ€”mapβ€”Multiset.map_map
Multiset.map_congr
map_mk πŸ“–mathematicalMultiset.cardmap
Multiset.map
β€”β€”
map_zero πŸ“–mathematicalβ€”map
Sym
instZeroSym
β€”β€”
mem_append_iff πŸ“–mathematicalβ€”Sym
instMembership
append
β€”Multiset.mem_add
mem_attach πŸ“–mathematicalβ€”Sym
instMembership
attach
β€”Multiset.mem_attach
mem_cast πŸ“–mathematicalβ€”Sym
instMembership
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
cast
β€”β€”
mem_coe πŸ“–mathematicalβ€”Multiset
Multiset.instMembership
toMultiset
Sym
instMembership
β€”β€”
mem_cons πŸ“–mathematicalβ€”Sym
instMembership
cons
β€”Multiset.mem_cons
mem_cons_of_mem πŸ“–mathematicalSym
instMembership
consβ€”Multiset.mem_cons_of_mem
mem_cons_self πŸ“–mathematicalβ€”Sym
instMembership
cons
β€”Multiset.mem_cons_self
mem_fill_iff πŸ“–mathematicalβ€”Sym
instMembership
fill
β€”fill.eq_1
mem_cast
mem_append_iff
mem_replicate
mem_map πŸ“–mathematicalβ€”Sym
instMembership
map
β€”Multiset.mem_map
mem_mk πŸ“–mathematicalMultiset.cardSym
instMembership
Multiset
Multiset.instMembership
β€”β€”
mem_replicate πŸ“–mathematicalβ€”Sym
instMembership
replicate
β€”Multiset.mem_replicate
notMem_nil πŸ“–mathematicalβ€”Sym
instMembership
nil
β€”Multiset.notMem_zero
ofVector_cons πŸ“–mathematicalβ€”ofVector
List.Vector.cons
cons
β€”β€”
ofVector_nil πŸ“–mathematicalβ€”ofVector
List.Vector.nil
nil
β€”β€”
oneEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Sym
EquivLike.toFunLike
Equiv.instEquivLike
oneEquiv
Multiset
Multiset.card
Multiset.instSingleton
β€”β€”
replicate_right_inj πŸ“–mathematicalβ€”replicateβ€”β€”
replicate_right_injective πŸ“–mathematicalβ€”Sym
replicate
β€”β€”
replicate_succ πŸ“–mathematicalβ€”replicate
cons
β€”β€”
sigma_sub_ext πŸ“–β€”toMultiset
Sym
β€”β€”Sigma.subtype_ext
val_eq_coe
sound πŸ“–mathematicalβ€”ofVectorβ€”β€”
toMultiset_zero πŸ“–mathematicalβ€”toMultiset
Sym
instZeroSym
Multiset
Multiset.instZero
β€”β€”
val_eq_coe πŸ“–mathematicalβ€”Multiset
Multiset.card
toMultiset
β€”β€”
val_replicate πŸ“–mathematicalβ€”Multiset
Multiset.card
replicate
Multiset.replicate
β€”val_eq_coe
coe_replicate

SymOptionSuccEquiv

Definitions

NameCategoryTheorems
decode πŸ“–CompOp
4 mathmath: encode_decode, decode_inr, decode_encode, decode_inl
encode πŸ“–CompOp
4 mathmath: encode_of_none_notMem, encode_decode, decode_encode, encode_of_none_mem

Theorems

NameKindAssumesProvesValidatesDepends On
decode_encode πŸ“–mathematicalβ€”decode
encode
β€”encode_of_none_mem
Sym.cons_erase
encode_of_none_notMem
Sym.map_congr
Sym.map_map
Sym.attach_map_coe
decode_inl πŸ“–mathematicalβ€”decode
Sym
Sym.cons
β€”β€”
decode_inr πŸ“–mathematicalβ€”decode
Sym
Sym.map
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
Function.Embedding.some
β€”β€”
encode_decode πŸ“–mathematicalβ€”encode
decode
β€”encode_of_none_mem
Sym.erase_cons_head
Multiset.mem_map
Sym.map_injective
Option.some_injective
Sym.map_congr
Sym.map_map
Sym.attach_map_coe
encode_of_none_mem πŸ“–mathematicalSym
Sym.instMembership
encode
Sym.erase
β€”β€”
encode_of_none_notMem πŸ“–mathematicalSym
Sym.instMembership
encode
Sym.map
Sym.attach
β€”β€”

(root)

Definitions

NameCategoryTheorems
instDecidableEqSym πŸ“–CompOp
3 mathmath: Finset.sym_union, Finset.sym_inter, Finset.sym_succ
instDecidableRelVectorEquivOfDecidableEq πŸ“–CompOpβ€”
symOptionSuccEquiv πŸ“–CompOpβ€”

---

← Back to Index