Documentation Verification Report

Sym2

πŸ“ Source: Mathlib/Data/Sym/Sym2.lean

Statistics

MetricCount
Definitionssym2Map, sym2, Sym2, decidablePred, decidable, other, other', setoid, ToRel, add, attachWith, decidablePred_mem_diagSet, diag, diagSet, equivMultiset, equivSym, fromRel, decidablePred, fromRelOrderEmbedding, hrec, instDecidableEq, instDecidableRel, instDecidableRel', instPartialOrder, instRepr, instSetLike, instUnique, liftβ‚‚, map, mk, mkEmbedding, mul, pmap, rec, recOn, recOnSubsingleton, sym2EquivSym', toFinset, toMultiset, Β«termS(_,_)»»)
40
Theoremssym2Map_apply, mem_sym2_iff_subset, mk'_mem_sym2_iff, mk_mem_sym2_iff, mk_preimage_sym2, sym2_empty, sym2_eq_mk_image, sym2_iInter, sym2_image, sym2_insert, sym2_inter, sym2_preimage, sym2_singleton, sym2_univ, map, mem_range_diag, is_equivalence, trans, add_mk, attachWith_map_subtypeVal, ball, card_toFinset, card_toFinset_of_isDiag, card_toFinset_of_not_isDiag, card_toMultiset, coe_lift_symm_apply, coe_liftβ‚‚_symm_apply, coe_mk, congr_left, congr_right, diagSet_compl_eq_fromRel_ne, diagSet_compl_eq_setOf_not_isDiag, diagSet_eq_fromRel_eq, diagSet_eq_setOf_isDiag, diagSet_eq_univ_of_subsingleton, diagSet_subset_fromRel, diag_injective, diag_isDiag, disjoint_diagSet_fromRel, eq, eq_iff, eq_of_ne_mem, eq_swap, exact, exists, ext, ext_iff, filter_image_mk_isDiag, filter_image_mk_not_isDiag, forall, forall_mem_pair, fromRel_bot, fromRel_bot_iff, fromRel_eq_fromRell_iff_eq, fromRel_irrefl, fromRel_irreflexive, fromRel_mono, fromRel_mono_iff, fromRel_ne, fromRel_proj_prop, fromRel_prop, fromRel_relationMap, fromRel_subset_compl_diagSet, fromRel_toRel, fromRel_top, fromRel_top_iff, ind, inductionOn, inductionOnβ‚‚, instIsEmpty, instNontrivial, instSubsingleton, irreflexive_iff_fromRel_subset_diagSet_compl, isDiag_iff_mem_range_diag, isDiag_iff_proj_eq, isDiag_map, isDiag_of_subsingleton, lift_comp_map, lift_map_apply, lift_mk, lift_smul_lift, liftβ‚‚_mk, injective, map_comp, map_congr, map_id, map_id', map_map, map_mk, map_pair_eq, map_pmap, mem_and_mem_iff, mem_diagSet, mem_diagSet_iff_eq, mem_diagSet_iff_isDiag, mem_fromRel_irrefl_other_ne, mem_iff, mem_iff', mem_iff_exists, mem_iff_mem, mem_map, mem_mk_left, mem_mk_right, mem_pmap_iff, mem_toFinset, mem_toMultiset, mkEmbedding_apply, mk_eq_mk_iff, mk_isDiag_iff, mk_prod_swap_eq, mk_surjective, mul_mk, other_eq_other', other_invol, other_invol', other_mem, other_mem', other_ne, other_spec, other_spec', out_fst_mem, out_snd_mem, pair_eq_pmap, pmap_eq_map, pmap_map, pmap_pair, pmap_pmap, pmap_subtype_map_subtypeVal, range_diag, reflexive_iff_diagSet_subset_fromRel, rel_iff, rel_iff', sound, toFinset_mk_eq, toRel_fromRel, toRel_prop, toRel_symmetric
137
Total177

Function.Embedding

Definitions

NameCategoryTheorems
sym2Map πŸ“–CompOp
6 mathmath: SimpleGraph.map_edgeFinset_induce_of_support_subset, SimpleGraph.edgeFinset_map, Finset.sym2_map, sym2Map_apply, SimpleGraph.edgeSet_map, SimpleGraph.map_edgeFinset_induce

Theorems

NameKindAssumesProvesValidatesDepends On
sym2Map_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Sym2
Function.instFunLikeEmbedding
sym2Map
Sym2.map
β€”β€”

Set

Definitions

NameCategoryTheorems
sym2 πŸ“–CompOp
16 mathmath: List.setOf_mem_sym2, sym2_eq_mk_image, sym2_preimage, Multiset.setOf_mem_sym2, sym2_image, mk'_mem_sym2_iff, sym2_insert, sym2_iInter, mem_sym2_iff_subset, sym2_inter, Finset.coe_sym2, mk_mem_sym2_iff, sym2_univ, sym2_empty, mk_preimage_sym2, sym2_singleton

Theorems

NameKindAssumesProvesValidatesDepends On
mem_sym2_iff_subset πŸ“–mathematicalβ€”Sym2
Set
instMembership
sym2
instHasSubset
SetLike.coe
Sym2.instSetLike
β€”Sym2.inductionOn
mk'_mem_sym2_iff πŸ“–mathematicalβ€”Sym2
Set
instMembership
sym2
β€”mk_mem_sym2_iff
mk_mem_sym2_iff πŸ“–mathematicalβ€”Sym2
Set
instMembership
sym2
β€”β€”
mk_preimage_sym2 πŸ“–mathematicalβ€”preimage
Sym2
sym2
SProd.sprod
Set
instSProd
β€”β€”
sym2_empty πŸ“–mathematicalβ€”sym2
Set
instEmptyCollection
Sym2
β€”ext
sym2_eq_mk_image πŸ“–mathematicalβ€”sym2
image
Sym2
SProd.sprod
Set
instSProd
β€”ext
image_uncurry_prod
image2_curry
sym2_iInter πŸ“–mathematicalβ€”sym2
iInter
Sym2
β€”ext
sym2_image πŸ“–mathematicalβ€”sym2
image
Sym2
Sym2.map
β€”sym2_eq_mk_image
prod_image_image_eq
image_image
image_congr
sym2_insert πŸ“–mathematicalβ€”sym2
Set
instInsert
Sym2
instUnion
image
β€”ext
sym2_inter πŸ“–mathematicalβ€”sym2
Set
instInter
Sym2
β€”preimage_injective
Sym2.mk_surjective
prod_inter_prod
sym2_preimage πŸ“–mathematicalβ€”sym2
preimage
Sym2
Sym2.map
β€”ext
sym2_singleton πŸ“–mathematicalβ€”sym2
Set
instSingletonSet
Sym2
β€”ext
sym2_univ πŸ“–mathematicalβ€”sym2
univ
Sym2
β€”ext

Sym2

Definitions

NameCategoryTheorems
ToRel πŸ“–MathDef
5 mathmath: toRel_prop, SimpleGraph.reachable_fromEdgeSet_eq_reflTransGen_toRel, fromRel_toRel, toRel_symmetric, toRel_fromRel
add πŸ“–CompOp
1 mathmath: add_mk
attachWith πŸ“–CompOp
1 mathmath: attachWith_map_subtypeVal
decidablePred_mem_diagSet πŸ“–CompOp
2 mathmath: SimpleGraph.edgeFinset_top, card_diagSet_compl
diag πŸ“–CompOp
6 mathmath: diag_injective, range_diag, diag_isDiag, Finset.diag_mem_sym2_iff, isDiag_iff_mem_range_diag, Finset.sym2_singleton
diagSet πŸ“–CompOp
25 mathmath: disjoint_diagSet_fromRel, SimpleGraph.edgeSet_fromEdgeSet, diagSet_subset_fromRel, reflexive_iff_diagSet_subset_fromRel, SimpleGraph.edgeFinset_top, SimpleGraph.edgeSet_top, SimpleGraph.edgeSet_eq_iff, diagSet_eq_setOf_isDiag, SimpleGraph.fromEdgeSet_not_isDiag, diagSet_eq_fromRel_eq, range_diag, diagSet_compl_eq_fromRel_ne, SimpleGraph.edgeSet_sdiff_sdiff_isDiag, SimpleGraph.fromEdgeSet_le, card_diagSet_compl, fromRel_subset_compl_diagSet, diagSet_compl_eq_setOf_not_isDiag, SimpleGraph.edgeSet_subset_setOf_not_isDiag, irreflexive_iff_fromRel_subset_diagSet_compl, mem_diagSet, IsDiag.mem_range_diag, SimpleGraph.edgeSet_subset_compl_diagSet, diagSet_eq_univ_of_subsingleton, mem_diagSet_iff_eq, mem_diagSet_iff_isDiag
equivMultiset πŸ“–CompOpβ€”
equivSym πŸ“–CompOp
1 mathmath: List.sym2_eq_sym_two
fromRel πŸ“–CompOp
21 mathmath: disjoint_diagSet_fromRel, diagSet_subset_fromRel, reflexive_iff_diagSet_subset_fromRel, fromRel_relationMap, fromRel_ne, fromRel_top, fromRel_mono_iff, fromRel_bot_iff, diagSet_eq_fromRel_eq, fromRel_toRel, diagSet_compl_eq_fromRel_ne, fromRel_eq_fromRell_iff_eq, fromRel_subset_compl_diagSet, fromRel_bot, fromRel_prop, irreflexive_iff_fromRel_subset_diagSet_compl, toRel_fromRel, fromRel_proj_prop, fromRel_mono, SimpleGraph.reachable_fromEdgeSet_fromRel_eq_reflTransGen, fromRel_top_iff
fromRelOrderEmbedding πŸ“–CompOpβ€”
hrec πŸ“–CompOpβ€”
instDecidableEq πŸ“–CompOp
28 mathmath: SimpleGraph.Dart.edge_fiber, SimpleGraph.edgeFinset_sdiff, SimpleGraph.dart_edge_fiber_card, filter_image_mk_isDiag, Finset.sym2_toFinset, SimpleGraph.edgeFinset_deleteIncidenceSet_eq_sdiff, SimpleGraph.edgeFinset_replaceVertex_of_adj, card_image_diag, SimpleGraph.edgeFinset_replaceVertex_of_not_adj, SimpleGraph.Path.count_edges_eq_one, SimpleGraph.Walk.IsTrail.count_edges_eq_one, SimpleGraph.edgeFinset_sup, SimpleGraph.Walk.IsTrail.count_edges_le_one, Finset.image_diag_union_image_offDiag, filter_image_mk_not_isDiag, Finset.sym2_insert, card_image_offDiag, Multiset.dedup_sym2, SimpleGraph.disjoint_sdiff_neighborFinset_image, SimpleGraph.Walk.count_edges_takeUntil_le_one, SimpleGraph.Walk.coe_edges_toFinset, two_mul_card_image_offDiag, List.dedup_sym2, Finset.sym2_image, SimpleGraph.edgeFinset_deleteEdges, SimpleGraph.edgeFinset_inf, SimpleGraph.map_edgeFinset_induce, Finset.sym2_eq_image
instDecidableRel πŸ“–CompOpβ€”
instDecidableRel' πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOpβ€”
instRepr πŸ“–CompOpβ€”
instSetLike πŸ“–CompOp
27 mathmath: mem_mk_right, SimpleGraph.incidenceFinset_eq_filter, mem_pmap_iff, mem_mk_left, mem_and_mem_iff, SimpleGraph.Walk.IsTrail.even_countP_edges_iff, SimpleGraph.edge_mem_incidenceSet_iff, out_fst_mem, coe_mk, SimpleGraph.edgeFinset_deleteIncidenceSet_eq_filter, mem_iff_exists, ext_iff, mem_toFinset, mem_iff, mem_toMultiset, pmap_map, map_pmap, Set.mem_sym2_iff_subset, SimpleGraph.Walk.mem_support_iff_exists_mem_edges_of_not_nil, mem_map, SimpleGraph.lineGraph_adj_iff_exists, pmap_pmap, SimpleGraph.IsIndepSet.nonempty_mem_compl_mem_edge, SimpleGraph.adj_iff_exists_edge, out_snd_mem, SimpleGraph.Walk.mem_support_iff_exists_mem_edges, mem_iff_mem
instUnique πŸ“–CompOpβ€”
liftβ‚‚ πŸ“–CompOp
2 mathmath: liftβ‚‚_mk, coe_liftβ‚‚_symm_apply
map πŸ“–CompOp
47 mathmath: map.injective, QuadraticMap.sum_polar_sub_repr_sq, IsDiag.map, Set.sym2_preimage, fromRel_relationMap, lift_comp_map, SimpleGraph.Subgraph.image_coe_edgeSet_coe, pmap_subtype_map_subtypeVal, QuadraticMap.map_finsuppSum, SimpleGraph.Embedding.map_mem_edgeSet_iff, Set.sym2_image, attachWith_map_subtypeVal, SimpleGraph.Iso.map_mem_edgeSet_iff, map_id', map_map, SimpleGraph.Hom.mapEdgeSet_coe, SimpleGraph.Hom.map_mem_edgeSet, pmap_eq_map, List.sym2_map, Function.Embedding.sym2Map_apply, SimpleGraph.Subgraph.deleteEdges_coe_eq, SimpleGraph.Subgraph.edgeSet_map, QuadraticMap.map_finsuppSum', map_mk, map_comp, QuadraticMap.map_sum', Finsupp.coe_sym2Mul, pmap_map, map_pmap, QuadraticMap.apply_linearCombination', map_id, SimpleGraph.Subgraph.edgeSet_coe, mem_map, SimpleGraph.Walk.edgeSet_map, QuadraticMap.apply_linearCombination, QuadraticMap.map_sum, QuadraticMap.sum_repr_sq_add_sum_repr_mul_polar, SimpleGraph.Walk.edges_map, QuadraticMap.polarSym2_map_smul, Multiset.sym2_map, isDiag_map, Finset.sym2_image, map_pair_eq, lift_map_apply, map_congr, SimpleGraph.Subgraph.coe_deleteEdges_eq, Finsupp.sym2_support_eq_preimage_support_mul
mk πŸ“–CompOpβ€”
mkEmbedding πŸ“–CompOp
2 mathmath: mkEmbedding_apply, Finset.sym2_cons
mul πŸ“–CompOp
6 mathmath: mul_mk, Finsupp.coe_sym2Mul, QuadraticMap.apply_linearCombination, QuadraticMap.sum_repr_sq_add_sum_repr_mul_polar, QuadraticMap.polarSym2_map_smul, Finsupp.sym2_support_eq_preimage_support_mul
pmap πŸ“–CompOp
8 mathmath: pmap_subtype_map_subtypeVal, mem_pmap_iff, pmap_eq_map, pmap_pair, pmap_map, map_pmap, pair_eq_pmap, pmap_pmap
rec πŸ“–CompOpβ€”
recOn πŸ“–CompOpβ€”
recOnSubsingleton πŸ“–CompOpβ€”
sym2EquivSym' πŸ“–CompOpβ€”
toFinset πŸ“–CompOp
6 mathmath: card_toFinset_of_not_isDiag, toFinset_mk_eq, card_toFinset_of_isDiag, mem_toFinset, card_toFinset, SimpleGraph.card_toFinset_mem_edgeFinset
toMultiset πŸ“–CompOp
2 mathmath: card_toMultiset, mem_toMultiset

Theorems

NameKindAssumesProvesValidatesDepends On
add_mk πŸ“–mathematicalβ€”add
AddCommMagma.toAdd
β€”β€”
attachWith_map_subtypeVal πŸ“–mathematicalβ€”map
attachWith
β€”ind
ball πŸ“–β€”β€”β€”β€”β€”
card_toFinset πŸ“–mathematicalβ€”Finset.card
toFinset
IsDiag
IsDiag.decidablePred
β€”card_toFinset_of_isDiag
card_toFinset_of_not_isDiag
card_toFinset_of_isDiag πŸ“–mathematicalIsDiagFinset.card
toFinset
β€”ind
mk_isDiag_iff
toFinset_mk_eq
Finset.insert_eq_of_mem
Finset.card_singleton
card_toFinset_of_not_isDiag πŸ“–mathematicalIsDiagFinset.card
toFinset
β€”ind
toFinset_mk_eq
Finset.card_insert_of_notMem
mk_isDiag_iff
Finset.card_singleton
card_toMultiset πŸ“–mathematicalβ€”Multiset.card
toMultiset
β€”ind
zero_add
coe_lift_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
lift
β€”β€”
coe_liftβ‚‚_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
liftβ‚‚
β€”β€”
coe_mk πŸ“–mathematicalβ€”SetLike.coe
Sym2
instSetLike
Set
Set.instInsert
Set.instSingletonSet
β€”Set.ext
congr_left πŸ“–β€”β€”β€”β€”β€”
congr_right πŸ“–β€”β€”β€”β€”β€”
diagSet_compl_eq_fromRel_ne πŸ“–mathematicalβ€”Compl.compl
Set
Sym2
Set.instCompl
diagSet
fromRel
β€”Set.ext
diagSet_compl_eq_setOf_not_isDiag πŸ“–mathematicalβ€”Compl.compl
Set
Sym2
Set.instCompl
diagSet
setOf
IsDiag
β€”diagSet_eq_setOf_isDiag
diagSet_eq_fromRel_eq πŸ“–mathematicalβ€”diagSet
fromRel
Equivalence.symmetric
eq_equivalence
β€”Set.ext
Equivalence.symmetric
eq_equivalence
diagSet_eq_setOf_isDiag πŸ“–mathematicalβ€”diagSet
setOf
Sym2
IsDiag
β€”β€”
diagSet_eq_univ_of_subsingleton πŸ“–mathematicalβ€”diagSet
Set.univ
Sym2
β€”Set.ext
diagSet_subset_fromRel πŸ“–mathematicalSymmetricSet
Sym2
Set.instHasSubset
diagSet
fromRel
Reflexive
β€”β€”
diag_injective πŸ“–mathematicalβ€”Sym2
diag
β€”exact
diag_isDiag πŸ“–mathematicalβ€”IsDiag
diag
β€”β€”
disjoint_diagSet_fromRel πŸ“–mathematicalSymmetricDisjoint
Set
Sym2
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
diagSet
fromRel
β€”β€”
eq πŸ“–mathematicalβ€”Relβ€”Quotient.eq'
eq_iff πŸ“–β€”β€”β€”β€”β€”
eq_of_ne_mem πŸ“–β€”Sym2
SetLike.instMembership
instSetLike
β€”β€”mem_and_mem_iff
eq_swap πŸ“–β€”β€”β€”β€”β€”
exact πŸ“–mathematicalβ€”Relβ€”β€”
exists πŸ“–β€”β€”β€”β€”Function.Surjective.exists
mk_surjective
ext πŸ“–β€”Sym2
SetLike.instMembership
instSetLike
β€”β€”SetLike.ext
ext_iff πŸ“–mathematicalβ€”Sym2
SetLike.instMembership
instSetLike
β€”ext
filter_image_mk_isDiag πŸ“–mathematicalβ€”Finset.filter
Sym2
IsDiag
IsDiag.decidablePred
Finset.image
instDecidableEq
SProd.sprod
Finset
Finset.instSProd
Finset.diag
β€”Finset.image_diag
Finset.ext
filter_image_mk_not_isDiag πŸ“–mathematicalβ€”Finset.filter
Sym2
IsDiag
IsDiag.decidablePred
Finset.image
instDecidableEq
SProd.sprod
Finset
Finset.instSProd
Finset.offDiag
β€”Finset.ext
forall πŸ“–β€”β€”β€”β€”Function.Surjective.forall
mk_surjective
forall_mem_pair πŸ“–β€”β€”β€”β€”β€”
fromRel_bot πŸ“–mathematicalβ€”fromRel
Bot.bot
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
Set
Sym2
Set.instEmptyCollection
β€”Set.eq_empty_of_forall_notMem
ind
fromRel_bot_iff πŸ“–mathematicalSymmetricfromRel
Set
Sym2
Set.instEmptyCollection
Bot.bot
Pi.instBotForall
BooleanAlgebra.toBot
Prop.instBooleanAlgebra
β€”fromRel_prop
fromRel_bot
fromRel_eq_fromRell_iff_eq πŸ“–mathematicalSymmetricfromRelβ€”OrderEmbedding.eq_iff_eq
fromRel_irrefl πŸ“–mathematicalSymmetricIsDiagβ€”ind
fromRel_prop
fromRel_irreflexive πŸ“–mathematicalSymmetricIsDiagβ€”fromRel_irrefl
fromRel_mono πŸ“–mathematicalSymmetric
Pi.hasLe
Prop.le
Set
Sym2
Set.instHasSubset
fromRel
β€”fromRel_mono_iff
fromRel_mono_iff πŸ“–mathematicalSymmetricSet
Sym2
Set.instHasSubset
fromRel
Pi.hasLe
Prop.le
β€”ind
fromRel_ne πŸ“–mathematicalβ€”fromRel
setOf
Sym2
IsDiag
β€”Set.ext
ind
fromRel_proj_prop πŸ“–mathematicalSymmetricSym2
Set
Set.instMembership
fromRel
β€”fromRel_prop
fromRel_prop πŸ“–mathematicalSymmetricSym2
Set
Set.instMembership
fromRel
β€”β€”
fromRel_relationMap πŸ“–mathematicalSymmetricfromRel
Relation.Map
Relation.map_symmetric
Set.image
Sym2
map
β€”Set.ext
Relation.map_symmetric
fromRel_subset_compl_diagSet πŸ“–mathematicalSymmetricSet
Sym2
Set.instHasSubset
fromRel
Compl.compl
Set.instCompl
diagSet
β€”β€”
fromRel_toRel πŸ“–mathematicalβ€”fromRel
ToRel
toRel_symmetric
β€”Set.ext
toRel_symmetric
ind
fromRel_top πŸ“–mathematicalβ€”fromRel
Top.top
Pi.instTopForall
BooleanAlgebra.toTop
Prop.instBooleanAlgebra
Set.univ
Sym2
β€”Set.eq_univ_of_forall
ind
fromRel_top_iff πŸ“–mathematicalSymmetricfromRel
Set.univ
Sym2
Top.top
Pi.instTopForall
BooleanAlgebra.toTop
Prop.instBooleanAlgebra
β€”fromRel_prop
fromRel_top
ind πŸ“–β€”β€”β€”β€”β€”
inductionOn πŸ“–β€”β€”β€”β€”ind
inductionOnβ‚‚ πŸ“–β€”β€”β€”β€”Quot.induction_onβ‚‚
instIsEmpty πŸ“–mathematicalβ€”IsEmpty
Sym2
β€”Equiv.isEmpty
Sym.instIsEmptySucc
instNontrivial πŸ“–mathematicalβ€”Nontrivial
Sym2
β€”Function.Injective.nontrivial
diag_injective
instSubsingleton πŸ“–mathematicalβ€”Sym2β€”Function.Injective.subsingleton
Equiv.injective
Sym.instSubsingleton
irreflexive_iff_fromRel_subset_diagSet_compl πŸ“–mathematicalSymmetricSet
Sym2
Set.instHasSubset
fromRel
Compl.compl
Set.instCompl
diagSet
β€”β€”
isDiag_iff_mem_range_diag πŸ“–mathematicalβ€”IsDiag
Sym2
Set
Set.instMembership
Set.range
diag
β€”range_diag
isDiag_iff_proj_eq πŸ“–mathematicalβ€”IsDiagβ€”mk_isDiag_iff
isDiag_map πŸ“–mathematicalβ€”IsDiag
map
β€”ind
isDiag_of_subsingleton πŸ“–mathematicalβ€”IsDiagβ€”ind
lift_comp_map πŸ“–mathematicalβ€”Sym2
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
lift
map
Subtype.prop
β€”Subtype.prop
Equiv.symm_apply_eq
lift_map_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
lift
map
Subtype.prop
β€”Subtype.prop
lift_comp_map
lift_mk πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
lift
β€”β€”
lift_smul_lift πŸ“–mathematicalβ€”Pi.smul'
Sym2
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
lift
β€”β€”
liftβ‚‚_mk πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
liftβ‚‚
β€”β€”
map_comp πŸ“–mathematicalβ€”map
Sym2
β€”β€”
map_congr πŸ“–mathematicalβ€”mapβ€”ext
map_id πŸ“–mathematicalβ€”map
Sym2
β€”β€”
map_id' πŸ“–mathematicalβ€”map
Sym2
β€”map_id
map_map πŸ“–mathematicalβ€”mapβ€”ind
map_mk πŸ“–mathematicalβ€”mapβ€”β€”
map_pair_eq πŸ“–mathematicalβ€”mapβ€”β€”
map_pmap πŸ“–mathematicalβ€”pmap
map
Sym2
SetLike.instMembership
instSetLike
mem_map
β€”ind
mem_map
mem_and_mem_iff πŸ“–mathematicalβ€”Sym2
SetLike.instMembership
instSetLike
β€”ind
mem_iff
mem_diagSet πŸ“–mathematicalβ€”Sym2
Set
Set.instMembership
diagSet
IsDiag
β€”β€”
mem_diagSet_iff_eq πŸ“–mathematicalβ€”Sym2
Set
Set.instMembership
diagSet
β€”β€”
mem_diagSet_iff_isDiag πŸ“–mathematicalβ€”Sym2
Set
Set.instMembership
diagSet
IsDiag
β€”β€”
mem_fromRel_irrefl_other_ne πŸ“–β€”Symmetric
Sym2
Set
Set.instMembership
fromRel
SetLike.instMembership
instSetLike
β€”β€”other_ne
fromRel_irrefl
mem_iff πŸ“–mathematicalβ€”Sym2
SetLike.instMembership
instSetLike
β€”mem_iff'
mem_iff' πŸ“–mathematicalβ€”Memβ€”eq_iff
eq_swap
mem_iff_exists πŸ“–mathematicalβ€”Sym2
SetLike.instMembership
instSetLike
β€”β€”
mem_iff_mem πŸ“–mathematicalβ€”Mem
Sym2
SetLike.instMembership
instSetLike
β€”β€”
mem_map πŸ“–mathematicalβ€”Sym2
SetLike.instMembership
instSetLike
map
β€”ind
mem_mk_left πŸ“–mathematicalβ€”Sym2
SetLike.instMembership
instSetLike
β€”β€”
mem_mk_right πŸ“–mathematicalβ€”Sym2
SetLike.instMembership
instSetLike
β€”mem_mk_left
eq_swap
mem_pmap_iff πŸ“–mathematicalβ€”Sym2
SetLike.instMembership
instSetLike
pmap
β€”mem_mk_left
mem_mk_right
pmap_pair
mem_toFinset πŸ“–mathematicalβ€”Finset
Finset.instMembership
toFinset
Sym2
SetLike.instMembership
instSetLike
β€”mem_toMultiset
toFinset.eq_1
Multiset.mem_toFinset
mem_toMultiset πŸ“–mathematicalβ€”Multiset
Multiset.instMembership
toMultiset
Sym2
SetLike.instMembership
instSetLike
β€”ind
mkEmbedding_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Sym2
Function.instFunLikeEmbedding
mkEmbedding
β€”β€”
mk_eq_mk_iff πŸ“–β€”β€”β€”β€”β€”
mk_isDiag_iff πŸ“–mathematicalβ€”IsDiagβ€”β€”
mk_prod_swap_eq πŸ“–β€”β€”β€”β€”eq_swap
mk_surjective πŸ“–mathematicalβ€”Sym2β€”Quot.mk_surjective
mul_mk πŸ“–mathematicalβ€”mul
CommMagma.toMul
β€”β€”
other_eq_other' πŸ“–mathematicalSym2
SetLike.instMembership
instSetLike
Mem.other
Mem.other'
β€”congr_right
other_spec'
other_spec
other_invol πŸ“–β€”Sym2
SetLike.instMembership
instSetLike
Mem.other
β€”β€”other_eq_other'
other_invol'
other_invol' πŸ“–β€”Sym2
SetLike.instMembership
instSetLike
Mem.other'
β€”β€”ind
other_mem πŸ“–mathematicalSym2
SetLike.instMembership
instSetLike
Mem.otherβ€”other_spec
mem_mk_right
other_mem' πŸ“–mathematicalSym2
SetLike.instMembership
instSetLike
Mem.other'β€”other_eq_other'
other_mem
other_ne πŸ“–β€”IsDiag
Sym2
SetLike.instMembership
instSetLike
β€”β€”Mathlib.Tactic.Contrapose.contraposeβ‚„
other_spec
other_spec πŸ“–mathematicalSym2
SetLike.instMembership
instSetLike
Mem.otherβ€”β€”
other_spec' πŸ“–mathematicalSym2
SetLike.instMembership
instSetLike
Mem.other'β€”ind
instIsEmptyFalse
out_fst_mem πŸ“–mathematicalβ€”Sym2
SetLike.instMembership
instSetLike
Quot.out
Rel
β€”Quot.out_eq
out_snd_mem πŸ“–mathematicalβ€”Sym2
SetLike.instMembership
instSetLike
Quot.out
Rel
β€”eq_swap
Quot.out_eq
pair_eq_pmap πŸ“–mathematicalβ€”pmap
forall_mem_pair
β€”β€”
pmap_eq_map πŸ“–mathematicalβ€”pmap
map
β€”ind
pmap_map πŸ“–mathematicalβ€”map
pmap
Sym2
SetLike.instMembership
instSetLike
β€”ind
pmap_pair πŸ“–mathematicalβ€”pmap
mem_mk_left
mem_mk_right
β€”β€”
pmap_pmap πŸ“–mathematicalβ€”pmap
Sym2
SetLike.instMembership
instSetLike
mem_pmap_iff
β€”ind
mem_pmap_iff
pmap_subtype_map_subtypeVal πŸ“–mathematicalβ€”map
pmap
β€”ind
range_diag πŸ“–mathematicalβ€”Set.range
Sym2
diag
diagSet
β€”Set.ext
reflexive_iff_diagSet_subset_fromRel πŸ“–mathematicalSymmetricReflexive
Set
Sym2
Set.instHasSubset
diagSet
fromRel
β€”β€”
rel_iff πŸ“–mathematicalβ€”Relβ€”β€”
rel_iff' πŸ“–mathematicalβ€”Relβ€”β€”
sound πŸ“–β€”Relβ€”β€”β€”
toFinset_mk_eq πŸ“–mathematicalβ€”toFinset
Finset
Finset.instInsert
Finset.instSingleton
β€”Finset.ext
toRel_fromRel πŸ“–mathematicalSymmetricToRel
fromRel
β€”β€”
toRel_prop πŸ“–mathematicalβ€”ToRel
Sym2
Set
Set.instMembership
β€”β€”
toRel_symmetric πŸ“–mathematicalβ€”Symmetric
ToRel
β€”eq_swap

Sym2.IsDiag

Definitions

NameCategoryTheorems
decidablePred πŸ“–CompOp
10 mathmath: Sym2.card_subtype_not_diag, Sym2.filter_image_mk_isDiag, QuadraticMap.map_finsuppSum, Sym2.filter_image_mk_not_isDiag, Sym2.card_toFinset, QuadraticMap.apply_linearCombination, Sym2.card_subtype_diag, Finset.sum_sym2_filter_not_isDiag, QuadraticMap.map_sum, QuadraticMap.sum_repr_sq_add_sum_repr_mul_polar

Theorems

NameKindAssumesProvesValidatesDepends On
map πŸ“–mathematicalSym2.IsDiagSym2.mapβ€”Sym2.ind
mem_range_diag πŸ“–mathematicalSym2.IsDiagSym2
Set
Set.instMembership
Sym2.diagSet
β€”Sym2.mem_diagSet_iff_isDiag

Sym2.Mem

Definitions

NameCategoryTheorems
decidable πŸ“–CompOp
3 mathmath: SimpleGraph.incidenceFinset_eq_filter, SimpleGraph.Walk.IsTrail.even_countP_edges_iff, SimpleGraph.edgeFinset_deleteIncidenceSet_eq_filter
other πŸ“–CompOp
4 mathmath: SimpleGraph.adj_incidenceSet_inter, Sym2.other_mem, Sym2.other_spec, Sym2.other_eq_other'
other' πŸ“–CompOp
3 mathmath: Sym2.other_eq_other', Sym2.other_spec', Sym2.other_mem'

Sym2.Rel

Definitions

NameCategoryTheorems
setoid πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
is_equivalence πŸ“–mathematicalβ€”Sym2.Relβ€”symm
trans
trans πŸ“–β€”Sym2.Relβ€”β€”β€”

Sym2.fromRel

Definitions

NameCategoryTheorems
decidablePred πŸ“–CompOpβ€”

Sym2.map

Theorems

NameKindAssumesProvesValidatesDepends On
injective πŸ“–mathematicalβ€”Sym2
Sym2.map
β€”Sym2.inductionOnβ‚‚

(root)

Definitions

NameCategoryTheorems
Sym2 πŸ“–CompOp
419 mathmath: SimpleGraph.Walk.isEulerian_iff, List.setOf_mem_sym2, SimpleGraph.edgeFinset_mono, SimpleGraph.not_mem_edgeSet_of_isDiag, Sym2.map.injective, SimpleGraph.mem_incidenceSet, SimpleGraph.deleteFar_iff, SimpleGraph.incidenceSetEquivNeighborSet_apply_coe, SimpleGraph.EdgeDisjointTriangles.card_edgeFinset_le, Sym2.disjoint_diagSet_fromRel, Finset.mk_mem_sym2_iff, Set.sym2_eq_mk_image, SimpleGraph.incidenceSet_inter_incidenceSet_of_adj, SimpleGraph.Connected.connected_delete_edge_of_not_isBridge, SimpleGraph.fromEdgeSet_inter, QuadraticMap.sum_polar_sub_repr_sq, SimpleGraph.edgeFinset_subset_sym2_of_support_subset, SimpleGraph.edgeSet_fromEdgeSet, SimpleGraph.Walk.edges_take, SimpleGraph.DeleteFar.le_card_sub_card, SimpleGraph.two_mul_card_edgeFinset, SimpleGraph.sum_degrees_eq_twice_card_edges, Multiset.Nodup.sym2, Sym2.card_subtype_not_diag, Sym2.mem_mk_right, SimpleGraph.Walk.edges_eq_zipWith_support, SimpleGraph.adj_iff_exists_edge_coe, SimpleGraph.sum_incMatrix_apply, Sym2.diagSet_subset_fromRel, SimpleGraph.Walk.edges_concat, SimpleGraph.Dart.edge_fiber, Set.sym2_preimage, SimpleGraph.isEdgeConnected_two, SimpleGraph.edgeFinset_sdiff, SimpleGraph.subgraphOfAdj_adj, SimpleGraph.card_edgeFinset_sup_edge, SimpleGraph.incMatrix_apply_mul_incMatrix_apply, SimpleGraph.Walk.edges_nodup_of_support_nodup, SimpleGraph.incidenceSet_inter_incidenceSet_of_not_adj, Sym2.reflexive_iff_diagSet_subset_fromRel, Sym2.fromRel_relationMap, SimpleGraph.edgeFinset_top, SimpleGraph.Walk.head_edges_eq_mk_start_snd, SimpleGraph.map_edgeFinset_induce_of_support_subset, SimpleGraph.IsAcyclic.isPath_iff_isChain, SimpleGraph.extremalNumber_le_iff_of_nonneg, SimpleGraph.Subgraph.spanningCoe_subgraphOfAdj, Sym2.lift_comp_map, Sym2.instNontrivial, Sym2.filter_image_mk_isDiag, SimpleGraph.Subgraph.IsMatching.toEdge_eq_of_adj, SimpleGraph.Walk.IsTrail.edges_nodup, SimpleGraph.card_edgeFinset_le_card_choose_two, Sym2.sortEquiv_apply_coe, SimpleGraph.isEdgeReachable_add_one, Sym2.fromRel_ne, SimpleGraph.incidenceFinset_eq_filter, Finset.sym2_toFinset, SimpleGraph.card_edgeFinset_map, SimpleGraph.farFromTriangleFree_iff, SimpleGraph.card_incidenceSet_eq_degree, SimpleGraph.Walk.rotate_edges, SimpleGraph.Subgraph.image_coe_edgeSet_coe, SimpleGraph.Subgraph.edgeSet_bot, List.length_sym2, SimpleGraph.Walk.cons_isCycle_iff, List.Perm.sym2, SimpleGraph.Subgraph.mem_edgeSet, SimpleGraph.deleteEdges_fromEdgeSet, SimpleGraph.coe_edgeFinset, SimpleGraph.edgeSet_top, SimpleGraph.deleteEdges_univ, SimpleGraph.Walk.isTrail_def, SimpleGraph.edgeFinset_deleteIncidenceSet_eq_sdiff, Sym2.fromRel_top, Sym2.fromRel_mono_iff, SimpleGraph.isBipartiteWith_sum_degrees_eq_card_edges, List.Sublist.sym2, SimpleGraph.edgeFinset_map, SimpleGraph.isEdgeConnected_add_one, SimpleGraph.card_edgeFinset_of_isExtremal_free, Sym2.diag_injective, Sym2.mem_pmap_iff, SimpleGraph.Walk.mk_start_snd_eq_head_edges, SimpleGraph.mem_incidenceFinset, SimpleGraph.isBipartiteWith_sum_degrees_eq_card_edges', Sym2.mkEmbedding_apply, SimpleGraph.edgeSet_ssubset_edgeSet, SimpleGraph.edgeFinset_replaceVertex_of_adj, SimpleGraph.edgeSet_replaceVertex_of_adj, SimpleGraph.LocallyLinear.card_edgeFinset, QuadraticMap.map_finsuppSum, Multiset.setOf_mem_sym2, SimpleGraph.edgeFinset_nonempty, SimpleGraph.reachable_delete_edges_iff_exists_walk, SimpleGraph.Embedding.map_mem_edgeSet_iff, SimpleGraph.edge_edgeSet_of_ne, SimpleGraph.edgeSet_eq_iff, SimpleGraph.card_edgeFinset_le_extremalNumber, Finset.card_sym2, SimpleGraph.edgeSet_bot, SimpleGraph.farFromTriangleFree.le_card_sub_card, SimpleGraph.edgeSet_inf, SimpleGraph.Walk.edgeSet_nil, SimpleGraph.adj_and_reachable_delete_edges_iff_exists_cycle, SimpleGraph.disjoint_edgeFinset, List.Nodup.sym2, SimpleGraph.isExtremal_free_iff, SimpleGraph.incMatrix_apply', SimpleGraph.edgeSet_subset_edgeSet, SimpleGraph.card_edgeFinset_turanGraph_add, Sym2.card_image_diag, SimpleGraph.le_card_edgeFinset_killCopies_add_copyCount, SimpleGraph.Subgraph.edgeSet_iInf, Set.sym2_image, Sym2.diagSet_eq_setOf_isDiag, SimpleGraph.edgeFinset_replaceVertex_of_not_adj, SimpleGraph.disjoint_edgeSet, SimpleGraph.Iso.map_mem_edgeSet_iff, Sym2.fromRel_bot_iff, Multiset.mk_mem_sym2_iff, SimpleGraph.isEdgeReachable_two, Sym2.toRel_prop, Multiset.sym2_eq_zero_iff, SimpleGraph.fromEdgeSet_not_isDiag, SimpleGraph.Subgraph.IsMatching.toEdge.surjective, Sym2.map_id', SimpleGraph.isBridge_iff_adj_and_forall_walk_mem_edges, SimpleGraph.edgeSet_deleteIncidenceSet, Sym2.mem_mk_left, SimpleGraph.Hom.mapEdgeSet_coe, SimpleGraph.Iso.card_edgeFinset_eq, SimpleGraph.isTree_iff_connected_and_card, SimpleGraph.fromEdgeSet_adj, List.mk_mem_sym2, Finset.mem_sym2_iff, SimpleGraph.incidenceFinset_subset, SimpleGraph.vertexCoverNum_le_encard_edgeSet, Finset.sym2_mono, SimpleGraph.Walk.edges_takeUntil_subset, Finset.sym2_map, Sym2.mem_and_mem_iff, SimpleGraph.extremalNumber_top, SimpleGraph.edgeFinset_sup, SimpleGraph.Walk.IsTrail.even_countP_edges_iff, SimpleGraph.card_edgeFinset_deleteIncidenceSet_le_extremalNumber, SimpleGraph.Subgraph.deleteEdges_empty_eq, Set.mk'_mem_sym2_iff, SimpleGraph.edgeSet_subgraphOfAdj, SimpleGraph.fromEdgeSet_sdiff, Multiset.mem_sym2_iff, SimpleGraph.Walk.edgeSet_concat, SimpleGraph.edge_mem_incidenceSet_iff, Sym2.range_diag, SimpleGraph.incidenceSetEquivNeighborSet_symm_apply_coe, List.sym2_map, SimpleGraph.Walk.IsTrail.count_edges_le_one, Function.Embedding.sym2Map_apply, SimpleGraph.card_edgeFinset_top_eq_card_choose_two, SimpleGraph.dart_card_eq_twice_card_edges, SimpleGraph.fromEdgeSet_univ, Sym2.out_fst_mem, SimpleGraph.Walk.edges_dropUntil_subset, Finsupp.support_sym2Mul_subset, SimpleGraph.Walk.edges_nil, SimpleGraph.Subgraph.deleteEdges_coe_eq, SimpleGraph.Subgraph.edgeSet_map, SimpleGraph.edgeSet_nonempty, SimpleGraph.Hom.mapEdgeSet.injective, Sym2.diagSet_compl_eq_fromRel_ne, SimpleGraph.incMatrix_mul_transpose, SimpleGraph.Walk.mem_edgeSet, SimpleGraph.incMatrix_apply_eq_one_iff, SimpleGraph.Subgraph.deleteEdges_inter_edgeSet_right_eq, SimpleGraph.Walk.exists_mem_edges_of_not_reachable_deleteEdges, SimpleGraph.Walk.infix_support_iff_mem_edges, SimpleGraph.Subgraph.edgeSet_mono, Sym2.coe_mk, SimpleGraph.Subgraph.edgeSet_sInf, SimpleGraph.mem_incidence_iff_neighbor, SimpleGraph.edgeSet_sdiff_sdiff_isDiag, SimpleGraph.extremalNumber_of_fintypeCard_eq, SimpleGraph.DeleteFar.le_card_edgeFinset, SimpleGraph.Subgraph.edgeSet_sSup, Finset.sym2_empty, SimpleGraph.Path.notMem_edges_of_loop, SimpleGraph.Connected.card_vert_le_card_edgeSet_add_one, SimpleGraph.incidenceSet_inter_incidenceSet_subset, SimpleGraph.Subgraph.deleteEdges_inter_edgeSet_left_eq, QuadraticMap.map_finsuppSum', SimpleGraph.edgeFinset_deleteIncidenceSet_eq_filter, Sym2.mk_surjective, SimpleGraph.Walk.edges_cycleBypass_subset, SimpleGraph.fromEdgeSet_le, SimpleGraph.edgeDisjointTriangles_iff_mem_sym2_subsingleton, SimpleGraph.Dart.edge_comp_symm, Finset.sym2_nonempty, SimpleGraph.edgeFinset_strict_mono, SimpleGraph.Walk.toSubgraph_le_iff, SimpleGraph.deleteEdges_adj, Multiset.sym2_zero, SimpleGraph.Walk.mk_penultimate_end_eq_getLast_edges, SimpleGraph.card_edgeFinset_replaceVertex_of_not_adj, Sym2.mem_iff_exists, SimpleGraph.isBridge_iff, SimpleGraph.Subgraph.deleteEdges_adj, List.mk_mem_sym2_iff, SimpleGraph.Subgraph.edgeSet_iSup, Sym2.ext_iff, SimpleGraph.coe_incidenceFinset, Set.sym2_insert, Sym2.sortEquiv_symm_apply, Sym2.card_diagSet_compl, Finset.sym2_cons, SimpleGraph.edgeSet_strict_mono, SimpleGraph.le_card_edgeFinset_killCopies, Sym2.mem_toFinset, SimpleGraph.card_edgeFinset_replaceVertex_of_adj, SimpleGraph.isBridge_iff_adj_and_forall_cycle_notMem, SimpleGraph.Walk.edges_cons, Finset.Nonempty.sym2, Sym2.mem_iff, SimpleGraph.fromEdgeSet_disjoint, Finset.sym2_univ, Multiset.sym2_mono, SimpleGraph.Subgraph.edgeSet_subset, SimpleGraph.fromEdgeSet_empty, Sym2.fromRel_subset_compl_diagSet, Sym2.map_comp, Multiset.sym2_cons, Finset.injective_sym2, Sym2.mem_toMultiset, Finset.diag_mem_sym2_iff, Sym2.lift_smul_lift, SimpleGraph.deleteEdges_empty, Sym2.isDiag_iff_mem_range_diag, Sym2.fromRel_bot, QuadraticMap.map_sum', Finsupp.coe_sym2Mul, SimpleGraph.lineGraph_bot, SimpleGraph.deleteEdges_eq_inter_edgeSet, SimpleGraph.sum_degrees_support_eq_twice_card_edges, Sym2.diagSet_compl_eq_setOf_not_isDiag, SimpleGraph.EdgeDisjointTriangles.mem_sym2_subsingleton, Finset.image_diag_union_image_offDiag, SimpleGraph.incMatrix_mul_transpose_diag, Sym2.pmap_map, SimpleGraph.edgeSet_mono, Set.sym2_iInter, Sym2.filter_image_mk_not_isDiag, SimpleGraph.Subgraph.edgeSet_sup, Sym2.instIsEmpty, List.map_mk_disjoint_sym2, SimpleGraph.Walk.edges_bypass_subset, SimpleGraph.mem_edgeFinset, Sym2.map_pmap, SimpleGraph.edgeFinset_bot, SimpleGraph.extremalNumber_le_iff, Set.mem_sym2_iff_subset, Finset.monotone_sym2, SimpleGraph.card_edgeFinset_deleteIncidenceSet, SimpleGraph.lt_extremalNumber_iff, SimpleGraph.Walk.isSubwalk_toWalk_iff_mem_edges, SimpleGraph.Subgraph.incidenceSet_subset_incidenceSet, SimpleGraph.incMatrix_transpose_mul_diag, SimpleGraph.Walk.adj_toSubgraph_iff_mem_edges, Set.sym2_inter, Finset.sym2_insert, SimpleGraph.IsCycles.reachable_deleteEdges, SimpleGraph.Walk.mk_penultimate_end_mem_edges, WellFounded.sym2_gameAdd, SimpleGraph.Walk.mem_support_iff_exists_mem_edges_of_not_nil, Sym2.fromRel_prop, SimpleGraph.isAcyclic_add_edge_iff_of_not_reachable, SimpleGraph.mk'_mem_incidenceSet_left_iff, SimpleGraph.Dart.edge_mem, SimpleGraph.Path.mk'_mem_edges_singleton, QuadraticMap.apply_linearCombination', Finset.sym2_eq_empty, Acc.sym2_gameAdd, SimpleGraph.edgeSet_subset_setOf_not_isDiag, SimpleGraph.Walk.edges_drop, Sym2.card_image_offDiag, Multiset.dedup_sym2, SimpleGraph.Walk.cons_isTrail_iff, SimpleGraph.edgeFinset_subset_edgeFinset, SimpleGraph.EdgeLabeling.get_eq, List.map_mk_sublist_sym2, Finset.coe_sym2, Sym2.map_id, SimpleGraph.Subgraph.incidenceSet_subset, SimpleGraph.Subgraph.edgeSet_coe, SimpleGraph.edgeSet_map, SimpleGraph.lt_extremalNumber_iff_of_nonneg, SimpleGraph.card_incidenceFinset_eq_degree, SimpleGraph.Walk.edges_append, Sym2.IsDiag.not_mem_edgeSet, Sym2.mem_map, Set.mk_mem_sym2_iff, SimpleGraph.edgeFinset_eq_empty, SimpleGraph.disjoint_sdiff_neighborFinset_image, SimpleGraph.regularityReduced_edges_card_aux, SimpleGraph.Walk.edges_injective, SimpleGraph.disjoint_fromEdgeSet, Set.sym2_univ, SimpleGraph.Walk.edgeSet_map, SimpleGraph.Walk.edges_toPath_subset, SimpleGraph.Walk.edges_reverse, QuadraticMap.apply_linearCombination, SimpleGraph.Walk.edgeSet_append, SimpleGraph.degree_le_card_edgeFinset, SimpleGraph.triangle_removal, List.Subperm.sym2, SimpleGraph.Walk.IsSubwalk.edges_subset, Sym2.card_subtype_diag, Sym2.irreflexive_iff_fromRel_subset_diagSet_compl, SimpleGraph.card_edgeFinset_turanGraph, Finset.sum_sym2_filter_not_isDiag, SimpleGraph.lineGraph_adj_iff_exists, SimpleGraph.edgeSet_univ_card, SimpleGraph.Walk.count_edges_takeUntil_le_one, SimpleGraph.card_edgeFinset_induce_support, SimpleGraph.card_edgeFinset_completeEquipartiteGraph, SimpleGraph.Walk.IsTrail.length_le_card_edgeFinset, Disjoint.edgeSet, SimpleGraph.Walk.edgeSet_cons, SimpleGraph.edgeFinset_sup_edge, SimpleGraph.edgeSet_sup, SimpleGraph.Embedding.mapEdgeSet_apply, SimpleGraph.Walk.getLast_edges_eq_mk_penultimate_end, SimpleGraph.fromEdgeSet_union, Sym2.instSubsingleton, QuadraticMap.map_sum, SimpleGraph.Walk.IsSubwalk.edges_isInfix, Sym2.fromRel_proj_prop, SimpleGraph.Walk.coe_edges_toFinset, SimpleGraph.card_toFinset_mem_edgeFinset, Sym2.two_mul_card_image_offDiag, Set.sym2_empty, QuadraticMap.sum_repr_sq_add_sum_repr_mul_polar, Sym2.mem_diagSet, SimpleGraph.Walk.IsTrail.disjoint_edges_takeUntil_dropUntil, SimpleGraph.Walk.IsEulerian.mem_edges_iff, SimpleGraph.Iso.mapEdgeSet_apply, SimpleGraph.edgeSet_replaceVertex_of_not_adj, SimpleGraph.edgeSet_eq_empty, SimpleGraph.mk'_mem_incidenceSet_iff, SimpleGraph.edgeSet_deleteEdges, Finsupp.sym2Mul_apply_mk, Finset.sym2_val, SimpleGraph.CliqueFree.card_edgeFinset_le, SimpleGraph.Walk.isTrail_cons, SimpleGraph.Walk.edges_map, SimpleGraph.card_edgeSet, Sym2.card, Sym2.pmap_pmap, List.dedup_sym2, SimpleGraph.edgeSet_injective, List.mem_sym2_iff, SimpleGraph.edgeSet_sdiff, List.sym2_eq_sym_two, SimpleGraph.killCopies_def, Sym2.IsDiag.mem_range_diag, Finset.strictMono_sym2, SimpleGraph.edgeSet_subset_compl_diagSet, Sym2.fromRel_mono, SimpleGraph.mem_edgeSet, SimpleGraph.incMatrix_apply, Multiset.sym2_map, SimpleGraph.Subgraph.deleteEdges_deleteEdges, Finset.sym2_image, SimpleGraph.Walk.mem_edges_toSubgraph, SimpleGraph.card_edgeFinset_eq_extremalNumber_top_iff_nonempty_iso_turanGraph, SimpleGraph.card_edgeFinset_induce_of_support_subset, SimpleGraph.Walk.mk_start_snd_mem_edges, SimpleGraph.edgeFinset_deleteEdges, Set.mk_preimage_sym2, SimpleGraph.deleteEdges_sdiff_eq_of_le, SimpleGraph.deleteEdges_eq_self, Finsupp.mem_sym2_support_of_mul_ne_zero, SimpleGraph.incidence_other_neighbor_edge, SimpleGraph.adj_iff_exists_edge, SimpleGraph.edgeFinset_inf, Sym2.out_snd_mem, SimpleGraph.incidenceSet_subset, SimpleGraph.EdgeLabeling.labelGraph_adj, SimpleGraph.isBridge_iff_mem_and_forall_cycle_notMem, List.mem_sym2_cons_iff, Sym2.fromRel_top_iff, SimpleGraph.map_edgeFinset_induce, SimpleGraph.deleteEdges_deleteEdges, Set.sym2_singleton, SimpleGraph.mk'_mem_incidenceSet_right_iff, SimpleGraph.edgeFinset_card, SimpleGraph.Walk.length_edges, Sym2.diagSet_eq_univ_of_subsingleton, SimpleGraph.Subgraph.edgeSet_inf, SimpleGraph.Iso.mapEdgeSet_symm_apply, SimpleGraph.Walk.mem_support_iff_exists_mem_edges, Sym2.mem_diagSet_iff_eq, Multiset.monotone_sym2, List.sym2_eq_nil_iff, Finset.sym2_eq_image, Multiset.sym2_coe, Sym2.mem_diagSet_iff_isDiag, SimpleGraph.Walk.edges_eq_nil, SimpleGraph.incMatrix_apply_eq_zero_iff, SimpleGraph.mul_card_edgeFinset_turanGraph_le, SimpleGraph.Subgraph.coe_deleteEdges_eq, SimpleGraph.IsTree.card_edgeFinset, Multiset.card_sym2, Finset.sym2_singleton, SimpleGraph.edgeSet_singletonSubgraph, SimpleGraph.incMatrix_mul_transpose_apply_of_adj, Sym2.mem_iff_mem, SimpleGraph.isBipartiteWith_sum_degrees_eq_twice_card_edges, SimpleGraph.edgeFinset_ssubset_edgeFinset, Finsupp.sym2_support_eq_preimage_support_mul, SimpleGraph.card_edgeFinset_induce_compl_singleton
Β«termS(_,_)Β» πŸ“–Β» "API Documentation")CompOpβ€”

---

← Back to Index