Documentation Verification Report

Vector3

πŸ“ Source: Mathlib/Data/Vector3.lean

Statistics

MetricCount
DefinitionsVector3, append, cons, consElim, head, insert, nil, nilElim, nth, ofFn, recOn, tail, unexpandCons, unexpandNil, Β«term_::_Β», VectorAll, VectorAllP, VectorEx, instInhabitedVector3
19
Theoremsappend_add, append_cons, append_insert, append_left, append_nil, consElim_cons, cons_fs, cons_fz, cons_head_tail, eq_nil, insert_fs, insert_fz, recOn_cons, recOn_nil, imp, exists_vector_succ, exists_vector_zero, vectorAllP_cons, vectorAllP_iff_forall, vectorAllP_nil, vectorAllP_singleton, vectorAll_iff_forall, vectorEx_iff_exists
23
Total42

Vector3

Definitions

NameCategoryTheorems
append πŸ“–CompOp
5 mathmath: append_insert, append_nil, append_add, append_left, append_cons
cons πŸ“–CompOp
13 mathmath: Dioph.vec_ex1_dioph, vectorAllP_singleton, cons_fs, exists_vector_succ, cons_head_tail, cons_fz, insert_fz, consElim_cons, insert_fs, Dioph.diophFn_vec_comp1, recOn_cons, vectorAllP_cons, append_cons
consElim πŸ“–CompOp
1 mathmath: consElim_cons
head πŸ“–CompOp
1 mathmath: cons_head_tail
insert πŸ“–CompOp
3 mathmath: append_insert, insert_fz, insert_fs
nil πŸ“–CompOp
6 mathmath: append_nil, eq_nil, vectorAllP_nil, vectorAllP_singleton, exists_vector_zero, recOn_nil
nilElim πŸ“–CompOpβ€”
nth πŸ“–CompOpβ€”
ofFn πŸ“–CompOpβ€”
recOn πŸ“–CompOpβ€”
tail πŸ“–CompOp
1 mathmath: cons_head_tail
unexpandCons πŸ“–CompOpβ€”
unexpandNil πŸ“–CompOpβ€”
Β«term_::_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
append_add πŸ“–mathematicalβ€”append
Fin2.add
β€”β€”
append_cons πŸ“–mathematicalβ€”append
cons
β€”β€”
append_insert πŸ“–mathematicalβ€”insert
append
Fin2
Fin2.add
Vector3
β€”insert_fs
append_left πŸ“–mathematicalβ€”append
Fin2.left
β€”β€”
append_nil πŸ“–mathematicalβ€”append
nil
β€”β€”
consElim_cons πŸ“–mathematicalβ€”consElim
cons
β€”β€”
cons_fs πŸ“–mathematicalβ€”cons
Fin2.fs
β€”β€”
cons_fz πŸ“–mathematicalβ€”cons
Fin2.fz
β€”β€”
cons_head_tail πŸ“–mathematicalβ€”cons
head
tail
β€”β€”
eq_nil πŸ“–mathematicalβ€”nilβ€”β€”
insert_fs πŸ“–mathematicalβ€”insert
cons
Fin2.fs
β€”β€”
insert_fz πŸ“–mathematicalβ€”insert
Fin2.fz
cons
β€”β€”
recOn_cons πŸ“–mathematicalβ€”consβ€”β€”
recOn_nil πŸ“–mathematicalβ€”nilβ€”β€”

VectorAllP

Theorems

NameKindAssumesProvesValidatesDepends On
imp πŸ“–β€”VectorAllPβ€”β€”vectorAllP_iff_forall

(root)

Definitions

NameCategoryTheorems
Vector3 πŸ“–CompOp
5 mathmath: Vector3.append_insert, Dioph.vec_ex1_dioph, Dioph.diophPFun_vec, Dioph.diophFn_vec_comp1, Dioph.dioph_comp
VectorAll πŸ“–MathDef
1 mathmath: vectorAll_iff_forall
VectorAllP πŸ“–MathDef
4 mathmath: vectorAllP_nil, vectorAllP_singleton, vectorAllP_iff_forall, vectorAllP_cons
VectorEx πŸ“–MathDef
1 mathmath: vectorEx_iff_exists
instInhabitedVector3 πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
exists_vector_succ πŸ“–mathematicalβ€”Vector3.consβ€”Vector3.cons_head_tail
exists_vector_zero πŸ“–mathematicalβ€”Vector3.nilβ€”Vector3.eq_nil
vectorAllP_cons πŸ“–mathematicalβ€”VectorAllP
Vector3.cons
β€”β€”
vectorAllP_iff_forall πŸ“–mathematicalβ€”VectorAllPβ€”β€”
vectorAllP_nil πŸ“–mathematicalβ€”VectorAllP
Vector3.nil
β€”β€”
vectorAllP_singleton πŸ“–mathematicalβ€”VectorAllP
Vector3.cons
Vector3.nil
β€”β€”
vectorAll_iff_forall πŸ“–mathematicalβ€”VectorAllβ€”β€”
vectorEx_iff_exists πŸ“–mathematicalβ€”VectorExβ€”exists_vector_zero
exists_vector_succ

---

← Back to Index