Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Data/Vector/Basic.lean

Statistics

MetricCount
DefinitionsvectorEquivFin, casesOn, casesOnβ‚‚, casesOn₃, inductionOn, inductionOnβ‚‚, inductionOn₃, insertIdx, instInhabited, instTraversableFlipNat, last, mOfFn, mmap, reverse, scanl, toArray, traverse, Β«term_::α΅₯_Β»
18
Theoremsappend_nil, comp_traverse, cons_val, empty_toList_eq_ff, eq_cons_iff, eraseIdx_insertIdx', eraseIdx_insertIdx_self, eraseIdx_val, exists_eq_cons, ext, ext_iff, getElem_map, getElem_pmap, get_append_cons_succ, get_append_cons_zero, get_cons_nil, get_cons_succ, get_cons_zero, get_eq_get_toList, get_map, get_mapβ‚‚, get_ofFn, get_replicate, get_set_eq_if, get_set_of_ne, get_set_same, get_tail, get_tail_succ, get_zero, head?_toList, head_map, head_ofFn, head_pmap, id_traverse, inductionOn_cons, inductionOn_nil, insertIdx_comm, insertIdx_val, instLawfulTraversableFlipNat, last_def, length_val, mOfFn_pure, mapAccumr_cons, mapAccumrβ‚‚_cons, map_id, mapβ‚‚_cons, mapβ‚‚_nil, mk_toList, mmap_cons, mmap_nil, naturality, ne_cons_iff, nodup_iff_injective_get, not_empty_toList, ofFn_get, pmap_cons, pmap_cons', prod_set, prod_set', replicate_succ, reverse_get_zero, reverse_reverse, scanl_cons, scanl_get, scanl_head, scanl_nil, scanl_singleton, scanl_val, singleton_tail, sum_set, sum_set', tail_map, tail_nil, tail_ofFn, tail_pmap, tail_val, toList_empty, toList_injective, toList_map, toList_ofFn, toList_pmap, toList_reverse, toList_scanl, toList_set, toList_singleton, toList_tail, traverse_def, traverse_eq_map_id, zero_subsingleton
89
Total107

Equiv

Definitions

NameCategoryTheorems
vectorEquivFin πŸ“–CompOpβ€”

List.Vector

Definitions

NameCategoryTheorems
casesOn πŸ“–CompOpβ€”
casesOnβ‚‚ πŸ“–CompOpβ€”
casesOn₃ πŸ“–CompOpβ€”
inductionOn πŸ“–CompOp
2 mathmath: inductionOn_cons, inductionOn_nil
inductionOnβ‚‚ πŸ“–CompOpβ€”
inductionOn₃ πŸ“–CompOpβ€”
insertIdx πŸ“–CompOp
7 mathmath: continuous_insertIdx', eraseIdx_insertIdx', insertIdx_comm, tendsto_insertIdx, continuous_insertIdx, insertIdx_val, eraseIdx_insertIdx_self
instInhabited πŸ“–CompOpβ€”
instTraversableFlipNat πŸ“–CompOp
1 mathmath: instLawfulTraversableFlipNat
last πŸ“–CompOp
2 mathmath: last_def, reverse_get_zero
mOfFn πŸ“–CompOp
3 mathmath: mOfFn_pure, Turing.ToPartrec.Code.exists_code.comp, Vector.mOfFn_part_some
mmap πŸ“–CompOp
2 mathmath: mmap_cons, mmap_nil
reverse πŸ“–CompOp
5 mathmath: reverse_reverse, reverse_cons, reverse_get_zero, toList_reverse, reverse_snoc
scanl πŸ“–CompOp
7 mathmath: scanl_get, scanl_nil, scanl_head, scanl_singleton, scanl_val, toList_scanl, scanl_cons
toArray πŸ“–CompOpβ€”
traverse πŸ“–CompOp
5 mathmath: traverse_def, naturality, traverse_eq_map_id, id_traverse, comp_traverse
Β«term_::α΅₯_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
append_nil πŸ“–mathematicalβ€”List.Vector
instHAppendHAddNat
nil
β€”β€”
comp_traverse πŸ“–mathematicalβ€”traverse
Functor.Comp
Functor.Comp.instApplicativeComp
List.Vector
β€”traverse_def
seq_map_assoc
map_seq
cons_val πŸ“–mathematicalβ€”consβ€”β€”
empty_toList_eq_ff πŸ“–mathematicalβ€”toListβ€”β€”
eq_cons_iff πŸ“–mathematicalβ€”cons
head
tail
β€”head_cons
tail_cons
trans
IsPreorder.toIsTrans
IsEquiv.toIsPreorder
eq_isEquiv
cons_head_tail
eraseIdx_insertIdx' πŸ“–mathematicalβ€”eraseIdx
Fin.succAbove
insertIdx
Fin.predAbove
β€”lt_of_le_of_lt
length_val
eraseIdx_insertIdx_self πŸ“–mathematicalβ€”eraseIdx
insertIdx
β€”β€”
eraseIdx_val πŸ“–mathematicalβ€”eraseIdxβ€”β€”
exists_eq_cons πŸ“–mathematicalβ€”consβ€”eq_cons_iff
ext πŸ“–β€”getβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”getβ€”ext
getElem_map πŸ“–mathematicalβ€”List.Vector
instGetElemNatLt
map
β€”toList_map
getElem_pmap πŸ“–mathematicalβ€”List.Vector
instGetElemNatLt
pmap
β€”toList_pmap
get_append_cons_succ πŸ“–mathematicalβ€”get
List.Vector
instHAppendHAddNat
cons
β€”β€”
get_append_cons_zero πŸ“–mathematicalβ€”get
List.Vector
instHAppendHAddNat
cons
β€”β€”
get_cons_nil πŸ“–mathematicalβ€”get
cons
nil
β€”β€”
get_cons_succ πŸ“–mathematicalβ€”get
cons
β€”get_tail_succ
tail_cons
get_cons_zero πŸ“–mathematicalβ€”get
cons
β€”get_zero
head_cons
get_eq_get_toList πŸ“–mathematicalβ€”get
toList
toList_length
β€”β€”
get_map πŸ“–mathematicalβ€”get
map
β€”toList_length
get_mapβ‚‚ πŸ“–mathematicalβ€”get
mapβ‚‚
β€”mapβ‚‚_cons
get_zero
head_cons
get_cons_succ
get_ofFn πŸ“–mathematicalβ€”get
ofFn
β€”toList_length
toList_ofFn
get_replicate πŸ“–mathematicalβ€”get
replicate
β€”β€”
get_set_eq_if πŸ“–mathematicalβ€”get
set
β€”get_set_same
get_set_of_ne
get_set_of_ne πŸ“–mathematicalβ€”get
set
β€”toList_length
List.getElem_set_of_ne
get_set_same πŸ“–mathematicalβ€”get
set
β€”toList_length
get_tail πŸ“–mathematicalβ€”get
tail
β€”β€”
get_tail_succ πŸ“–mathematicalβ€”get
tail
β€”toList_length
get_zero πŸ“–mathematicalβ€”get
head
β€”β€”
head?_toList πŸ“–mathematicalβ€”toList
head
β€”β€”
head_map πŸ“–mathematicalβ€”head
map
β€”exists_eq_cons
map_cons
head_cons
head_ofFn πŸ“–mathematicalβ€”head
ofFn
β€”get_zero
get_ofFn
head_pmap πŸ“–mathematicalβ€”head
pmap
β€”exists_eq_cons
pmap.congr_simp
head_cons
id_traverse πŸ“–mathematicalβ€”traverse
List.Vector
β€”CommApplicative.toLawfulApplicative
instCommApplicativeId
inductionOn_cons πŸ“–mathematicalβ€”inductionOn
cons
β€”β€”
inductionOn_nil πŸ“–mathematicalβ€”inductionOn
nil
β€”β€”
insertIdx_comm πŸ“–mathematicalβ€”insertIdxβ€”β€”
insertIdx_val πŸ“–mathematicalβ€”insertIdxβ€”β€”
instLawfulTraversableFlipNat πŸ“–mathematicalβ€”LawfulTraversable
List.Vector
instTraversableFlipNat
β€”id_traverse
comp_traverse
traverse_eq_map_id
naturality
last_def πŸ“–mathematicalβ€”last
get
β€”β€”
length_val πŸ“–β€”β€”β€”β€”β€”
mOfFn_pure πŸ“–mathematicalβ€”mOfFn
List.Vector
ofFn
β€”mOfFn.eq_2
ofFn.eq_2
mapAccumr_cons πŸ“–mathematicalβ€”mapAccumr
cons
β€”β€”
mapAccumrβ‚‚_cons πŸ“–mathematicalβ€”mapAccumrβ‚‚
cons
β€”β€”
map_id πŸ“–mathematicalβ€”mapβ€”eq
toList_map
mapβ‚‚_cons πŸ“–mathematicalβ€”mapβ‚‚
cons
β€”β€”
mapβ‚‚_nil πŸ“–mathematicalβ€”mapβ‚‚
nil
β€”β€”
mk_toList πŸ“–β€”toListβ€”β€”β€”
mmap_cons πŸ“–mathematicalβ€”mmap
cons
List.Vector
β€”β€”
mmap_nil πŸ“–mathematicalβ€”mmap
nil
List.Vector
β€”β€”
naturality πŸ“–mathematicalβ€”List.Vector
traverse
β€”ApplicativeTransformation.preserves_pure
traverse_def
ApplicativeTransformation.preserves_seq
ApplicativeTransformation.preserves_map
ne_cons_iff πŸ“–β€”β€”β€”β€”eq_cons_iff
not_and_or
nodup_iff_injective_get πŸ“–mathematicalβ€”toList
get
β€”List.nodup_iff_injective_get
not_empty_toList πŸ“–mathematicalβ€”toListβ€”empty_toList_eq_ff
Bool.coe_sort_false
ofFn_get πŸ“–mathematicalβ€”ofFn
get
β€”ext
get_ofFn
pmap_cons πŸ“–mathematicalβ€”pmap
cons
β€”β€”
pmap_cons' πŸ“–mathematicalβ€”cons
pmap
β€”β€”
prod_set πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
MulOne.toOne
toList
set
take
drop
β€”List.prod_set
toList_length
toList_take
toList_drop
prod_set' πŸ“–mathematicalβ€”MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
CommGroup.toGroup
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroup.toDivisionCommMonoid
toList
set
InvOneClass.toInv
get
β€”List.prod_set'
toList_length
mul_assoc
replicate_succ πŸ“–mathematicalβ€”replicate
cons
β€”β€”
reverse_get_zero πŸ“–mathematicalβ€”head
reverse
last
β€”get_zero
last_def
toList_length
get_eq_get_toList
reverse_reverse πŸ“–mathematicalβ€”reverseβ€”β€”
scanl_cons πŸ“–mathematicalβ€”scanl
cons
β€”eq
toList_cons
scanl_get πŸ“–mathematicalβ€”get
scanl
β€”Fin.eq_zero
scanl_singleton
get_zero
head_cons
toList_cons
toList_singleton
zero_add
cons_head_tail
scanl_cons
get_cons_succ
scanl_head
scanl_head πŸ“–mathematicalβ€”head
scanl
β€”zero_subsingleton
head_cons
cons_head_tail
toList_length
toList_cons
scanl_cons
scanl_nil πŸ“–mathematicalβ€”scanl
nil
cons
β€”β€”
scanl_singleton πŸ“–mathematicalβ€”scanl
cons
head
nil
β€”cons_head_tail
singleton_tail
scanl_cons
head_cons
scanl_val πŸ“–mathematicalβ€”scanlβ€”β€”
singleton_tail πŸ“–mathematicalβ€”tail
nil
β€”β€”
sum_set πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddZero.toZero
toList
set
take
drop
β€”List.sum_set
toList_length
toList_take
toList_drop
sum_set' πŸ“–mathematicalβ€”AddZero.toAdd
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
toList
set
NegZeroClass.toNeg
get
β€”List.sum_set'
toList_length
add_assoc
tail_map πŸ“–mathematicalβ€”tail
map
β€”exists_eq_cons
map_cons
tail_cons
tail_nil πŸ“–mathematicalβ€”tail
nil
β€”β€”
tail_ofFn πŸ“–mathematicalβ€”tail
ofFn
β€”ofFn_get
get_tail
get_ofFn
tail_pmap πŸ“–mathematicalβ€”tail
pmap
β€”exists_eq_cons
pmap.congr_simp
tail_cons
tail_val πŸ“–mathematicalβ€”tailβ€”β€”
toList_empty πŸ“–mathematicalβ€”toListβ€”β€”
toList_injective πŸ“–mathematicalβ€”List.Vector
toList
β€”Subtype.val_injective
toList_map πŸ“–mathematicalβ€”toList
map
β€”β€”
toList_ofFn πŸ“–mathematicalβ€”toList
ofFn
β€”ofFn.eq_1
toList.eq_1
nil.eq_1
ofFn.eq_2
toList_cons
toList_pmap πŸ“–mathematicalβ€”toList
pmap
β€”β€”
toList_reverse πŸ“–mathematicalβ€”toList
reverse
β€”β€”
toList_scanl πŸ“–mathematicalβ€”toList
scanl
β€”β€”
toList_set πŸ“–mathematicalβ€”toList
set
β€”β€”
toList_singleton πŸ“–mathematicalβ€”toList
head
β€”cons_head_tail
singleton_tail
toList_cons
head_cons
toList_tail πŸ“–mathematicalβ€”toList
tail
β€”β€”
traverse_def πŸ“–mathematicalβ€”traverse
cons
List.Vector
β€”β€”
traverse_eq_map_id πŸ“–mathematicalβ€”traverse
List.Vector
map
β€”CommApplicative.toLawfulApplicative
instCommApplicativeId
zero_subsingleton πŸ“–mathematicalβ€”List.Vectorβ€”ext

---

← Back to Index