Relation
π Source: Mathlib/Data/WSeq/Relation.lean
Statistics
Stream'.WSeq
Definitions
| Name | Category | Theorems |
|---|---|---|
BisimO π | MathDef | |
LiftRel π | MathDef | |
LiftRelO π | MathDef | |
Β«term_~Κ·_Β» π | CompOp | β |
Theorems
Stream'.WSeq.BisimO
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
imp π | β | Stream'.WSeq.BisimO | β | β | Stream'.WSeq.LiftRelO.imp_right |
Stream'.WSeq.Equiv
Theorems
Stream'.WSeq.LiftRel
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
equiv π | mathematical | β | Stream'.WSeqStream'.WSeq.LiftRel | β | reflsymmtrans |
refl π | mathematical | Reflexive | Stream'.WSeqStream'.WSeq.LiftRel | β | Computation.LiftRel.refl |
swap π | mathematical | β | Function.swapStream'.WSeqStream'.WSeq.LiftRel | β | swap_lem |
swap_lem π | mathematical | Stream'.WSeq.LiftRel | Function.swap | β | Stream'.WSeq.LiftRelO.swapComputation.LiftRel.swapStream'.WSeq.liftRel_destruct |
trans π | mathematical | Transitive | Stream'.WSeqStream'.WSeq.LiftRel | β | Stream'.WSeq.liftRel_destructComputation.liftRel_defComputation.terminates_of_liftRelComputation.rel_of_liftRel |
Stream'.WSeq.LiftRelO
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
imp π | β | Stream'.WSeq.LiftRelO | β | β | β |
imp_right π | β | Stream'.WSeq.LiftRelO | β | β | imp |
swap π | mathematical | β | Function.swapStream'.WSeqStream'.WSeq.LiftRelO | β | β |
Stream'.WSeq.liftRel_join
Theorems
---