Documentation Verification Report

Relation

πŸ“ Source: Mathlib/Data/WSeq/Relation.lean

Statistics

MetricCount
DefinitionsBisimO, LiftRel, LiftRelO, Β«term_~Κ·_Β»
4
Theoremsimp, equivalence, ext, refl, trans, equiv, refl, swap, swap_lem, trans, imp, imp_right, swap, bind_assoc, bind_assoc_comp, bind_congr, bind_ret, cons_congr, destruct_congr, destruct_congr_iff, dropn_congr, exists_of_liftRel_left, exists_of_liftRel_right, flatten_congr, flatten_equiv, get?_congr, head_congr, join_append, join_congr, join_join, join_map_ret, join_ret, liftRel_append, liftRel_bind, liftRel_cons, liftRel_destruct, liftRel_destruct_iff, liftRel_dropn_destruct, liftRel_flatten, liftRel_join, lem, liftRel_map, liftRel_nil, liftRel_think_left, liftRel_think_right, map_congr, mem_congr, ret_bind, tail_congr, think_congr, think_equiv
51
Total55

Stream'.WSeq

Definitions

NameCategoryTheorems
BisimO πŸ“–MathDef
2 mathmath: destruct_congr_iff, destruct_congr
LiftRel πŸ“–MathDef
10 mathmath: liftRel_cons, LiftRel.equiv, LiftRel.refl, liftRel_nil, liftRel_think_right, liftRel_destruct_iff, LiftRel.symm, liftRel_think_left, LiftRel.swap, LiftRel.trans
LiftRelO πŸ“–MathDef
5 mathmath: liftRel_join.lem, liftRel_destruct, liftRel_destruct_iff, liftRel_dropn_destruct, LiftRelO.swap
Β«term_~Κ·_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bind_assoc πŸ“–mathematicalβ€”Equiv
bind
β€”bind_assoc_comp
bind_assoc_comp πŸ“–mathematicalβ€”Equiv
bind
Stream'.WSeq
β€”map_join
map_comp
Function.comp_assoc
join_join
bind_congr πŸ“–mathematicalEquivbindβ€”liftRel_bind
bind_ret πŸ“–mathematicalβ€”Equiv
bind
Stream'.WSeq
ret
map
β€”map_comp
join_map_ret
cons_congr πŸ“–mathematicalEquivconsβ€”β€”
destruct_congr πŸ“–mathematicalEquivComputation.LiftRel
Stream'.WSeq
BisimO
destruct
β€”liftRel_destruct
destruct_congr_iff πŸ“–mathematicalβ€”Equiv
Computation.LiftRel
Stream'.WSeq
BisimO
destruct
β€”liftRel_destruct_iff
dropn_congr πŸ“–mathematicalEquivdropβ€”β€”
exists_of_liftRel_left πŸ“–β€”LiftRel
Stream'.WSeq
membership
β€”β€”exists_get?_of_mem
Computation.exists_of_mem_map
liftRel_dropn_destruct
get?_mem
Computation.mem_map
exists_of_liftRel_right πŸ“–β€”LiftRel
Stream'.WSeq
membership
β€”β€”exists_of_liftRel_left
LiftRel.swap
flatten_congr πŸ“–mathematicalComputation.LiftRel
Stream'.WSeq
Equiv
flattenβ€”liftRel_flatten
flatten_equiv πŸ“–mathematicalStream'.WSeq
Computation
Computation.instMembership
Equiv
flatten
β€”flatten_pure
Equiv.trans
flatten_think
get?_congr πŸ“–mathematicalEquivComputation.Equiv
get?
β€”head_congr
dropn_congr
head_congr πŸ“–mathematicalEquivComputation.Equiv
head
β€”Computation.exists_of_mem_map
destruct_congr
Computation.mem_map
Equiv.symm
join_append πŸ“–mathematicalβ€”Equiv
join
append
Stream'.WSeq
β€”nil_append
join_nil
destruct_nil
join_cons
destruct_think
Computation.destruct_think
join_think
cons_append
think_append
append_assoc
destruct_cons
join_congr πŸ“–mathematicalLiftRel
Stream'.WSeq
Equiv
joinβ€”liftRel_join
join_join πŸ“–mathematicalβ€”Equiv
join
Stream'.WSeq
map
β€”nil_append
join_nil
destruct_nil
join_cons
join_think
destruct_think
map_cons
map_think
cons_append
Computation.destruct_think
think_append
append_assoc
destruct_cons
join_map_ret πŸ“–mathematicalβ€”Equiv
join
map
Stream'.WSeq
ret
β€”join_nil
destruct_nil
map_cons
ofList_cons
join_cons
cons_append
nil_append
destruct_think
destruct_cons
Computation.destruct_think
map_think
join_think
join_ret πŸ“–mathematicalβ€”Equiv
join
ret
Stream'.WSeq
β€”ofList_cons
join_cons
join_nil
append_nil
think_equiv
liftRel_append πŸ“–mathematicalLiftRelappendβ€”Computation.LiftRel.imp
LiftRelO.imp_right
liftRel_destruct
destruct_append
Computation.liftRel_bind
liftRel_bind πŸ“–mathematicalLiftRelbindβ€”liftRel_join
liftRel_map
liftRel_cons πŸ“–mathematicalβ€”LiftRel
cons
β€”destruct_cons
liftRel_destruct πŸ“–mathematicalLiftRelComputation.LiftRel
Stream'.WSeq
LiftRelO
destruct
β€”Computation.LiftRel.imp
LiftRelO.imp_right
liftRel_destruct_iff πŸ“–mathematicalβ€”LiftRel
Computation.LiftRel
Stream'.WSeq
LiftRelO
destruct
β€”liftRel_destruct
Computation.LiftRel.imp
LiftRelO.imp_right
liftRel_dropn_destruct πŸ“–mathematicalLiftRelComputation.LiftRel
Stream'.WSeq
LiftRelO
destruct
drop
β€”liftRel_destruct
destruct_tail
Computation.liftRel_bind
liftRel_flatten πŸ“–mathematicalComputation.LiftRel
Stream'.WSeq
LiftRel
flattenβ€”destruct_flatten
Computation.liftRel_bind
Computation.LiftRel.imp
LiftRelO.imp_right
flatten_pure
liftRel_destruct
liftRel_join πŸ“–mathematicalLiftRel
Stream'.WSeq
joinβ€”nil_append
destruct_append
Computation.liftRel_bind
liftRel_destruct
liftRel_join.lem
LiftRelO.swap
LiftRel.swap
liftRel_map πŸ“–mathematicalLiftRelmapβ€”destruct_map
Computation.liftRel_map
liftRel_destruct
liftRel_nil πŸ“–mathematicalβ€”LiftRel
nil
β€”destruct_nil
liftRel_think_left πŸ“–mathematicalβ€”LiftRel
think
β€”liftRel_destruct_iff
destruct_think
liftRel_think_right πŸ“–mathematicalβ€”LiftRel
think
β€”liftRel_destruct_iff
destruct_think
map_congr πŸ“–mathematicalEquivmapβ€”liftRel_map
mem_congr πŸ“–mathematicalEquivStream'.WSeq
membership
β€”exists_get?_of_mem
get?_mem
get?_congr
Equiv.symm
ret_bind πŸ“–mathematicalβ€”Equiv
bind
ret
β€”map_ret
tail_congr πŸ“–mathematicalEquivtailβ€”flatten_congr
Computation.bind_pure
Computation.liftRel_bind
destruct_congr
Equiv.refl
think_congr πŸ“–mathematicalEquivthinkβ€”β€”
think_equiv πŸ“–mathematicalβ€”Equiv
think
β€”Equiv.refl

Stream'.WSeq.BisimO

Theorems

NameKindAssumesProvesValidatesDepends On
imp πŸ“–β€”Stream'.WSeq.BisimOβ€”β€”Stream'.WSeq.LiftRelO.imp_right

Stream'.WSeq.Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
equivalence πŸ“–mathematicalβ€”Stream'.WSeq
Stream'.WSeq.Equiv
β€”refl
symm
trans
ext πŸ“–mathematicalComputation.Equiv
Stream'.WSeq.get?
Stream'.WSeq.Equivβ€”Computation.liftRel_def
Stream'.WSeq.head_terminates_iff
Computation.terminates_congr
Computation.mem_unique
Computation.mem_map
Computation.Equiv.trans
Computation.Equiv.symm
Stream'.WSeq.get?_congr
Stream'.WSeq.flatten_equiv
Stream'.WSeq.get?_tail
refl πŸ“–mathematicalβ€”Stream'.WSeq.Equivβ€”Stream'.WSeq.LiftRel.refl
trans πŸ“–β€”Stream'.WSeq.Equivβ€”β€”Stream'.WSeq.LiftRel.trans

Stream'.WSeq.LiftRel

Theorems

NameKindAssumesProvesValidatesDepends On
equiv πŸ“–mathematicalβ€”Stream'.WSeq
Stream'.WSeq.LiftRel
β€”refl
symm
trans
refl πŸ“–mathematicalReflexiveStream'.WSeq
Stream'.WSeq.LiftRel
β€”Computation.LiftRel.refl
swap πŸ“–mathematicalβ€”Function.swap
Stream'.WSeq
Stream'.WSeq.LiftRel
β€”swap_lem
swap_lem πŸ“–mathematicalStream'.WSeq.LiftRelFunction.swapβ€”Stream'.WSeq.LiftRelO.swap
Computation.LiftRel.swap
Stream'.WSeq.liftRel_destruct
trans πŸ“–mathematicalTransitiveStream'.WSeq
Stream'.WSeq.LiftRel
β€”Stream'.WSeq.liftRel_destruct
Computation.liftRel_def
Computation.terminates_of_liftRel
Computation.rel_of_liftRel

Stream'.WSeq.LiftRelO

Theorems

NameKindAssumesProvesValidatesDepends On
imp πŸ“–β€”Stream'.WSeq.LiftRelOβ€”β€”β€”
imp_right πŸ“–β€”Stream'.WSeq.LiftRelOβ€”β€”imp
swap πŸ“–mathematicalβ€”Function.swap
Stream'.WSeq
Stream'.WSeq.LiftRelO
β€”β€”

Stream'.WSeq.liftRel_join

Theorems

NameKindAssumesProvesValidatesDepends On
lem πŸ“–mathematicalStream'.WSeq.LiftRel
Stream'.WSeq
Computation
Computation.instMembership
Stream'.WSeq.destruct
Stream'.WSeq.join
Stream'.WSeq.LiftRelOβ€”Computation.exists_results_of_mem
Computation.of_results_bind
Stream'.WSeq.destruct_join
Computation.exists_of_liftRel_left
Stream'.WSeq.liftRel_destruct
Computation.Results.mem
Computation.mem_bind
Computation.ret_mem
Computation.eq_of_pure_mem
Computation.of_results_think
Stream'.WSeq.destruct_append
lt_of_lt_of_le
Computation.think_mem

---

← Back to Index