| Name | Category | Theorems |
Listα 📖 | CompData | 2 mathmath: leftInverse_list, rightInverse_list
|
ListαEquivPUnitSum 📖 | CompOp | — |
Listβ 📖 | CompOp | 2 mathmath: leftInverse_list, rightInverse_list
|
Natα 📖 | CompData | 4 mathmath: NatαEquivPUnitSumPUnit_apply, leftInverse_nat, rightInverse_nat, NatαEquivPUnitSumPUnit_symm_apply
|
NatαEquivPUnitSumPUnit 📖 | CompOp | 2 mathmath: NatαEquivPUnitSumPUnit_apply, NatαEquivPUnitSumPUnit_symm_apply
|
Natβ 📖 | CompOp | 2 mathmath: leftInverse_nat, rightInverse_nat
|
equivList 📖 | CompOp | — |
equivNat 📖 | CompOp | — |
instInhabitedListα 📖 | CompOp | — |
instInhabitedListβCons 📖 | CompOp | — |
instInhabitedNatα 📖 | CompOp | — |
instInhabitedNatβSucc 📖 | CompOp | — |
ofList 📖 | CompOp | 2 mathmath: leftInverse_list, rightInverse_list
|
ofNat 📖 | CompOp | 2 mathmath: leftInverse_nat, rightInverse_nat
|
toList 📖 | CompOp | 2 mathmath: leftInverse_list, rightInverse_list
|
toNat 📖 | CompOp | 2 mathmath: leftInverse_nat, rightInverse_nat
|