Documentation Verification Report

Constructions

📁 Source: Mathlib/Data/W/Constructions.lean

Statistics

MetricCount
DefinitionsListα, ListαEquivPUnitSum, Listβ, Natα, NatαEquivPUnitSumPUnit, Natβ, equivList, equivNat, instInhabitedListα, instInhabitedListβCons, instInhabitedNatα, instInhabitedNatβSucc, ofList, ofNat, toList, toNat
16
TheoremsNatαEquivPUnitSumPUnit_apply, NatαEquivPUnitSumPUnit_symm_apply, leftInverse_list, leftInverse_nat, rightInverse_list, rightInverse_nat
6
Total22

WType

Definitions

NameCategoryTheorems
Listα 📖CompData
2 mathmath: leftInverse_list, rightInverse_list
ListαEquivPUnitSum 📖CompOp
Listβ 📖CompOp
2 mathmath: leftInverse_list, rightInverse_list
Natα 📖CompData
4 mathmath: NatαEquivPUnitSumPUnit_apply, leftInverse_nat, rightInverse_nat, NatαEquivPUnitSumPUnit_symm_apply
NatαEquivPUnitSumPUnit 📖CompOp
2 mathmath: NatαEquivPUnitSumPUnit_apply, NatαEquivPUnitSumPUnit_symm_apply
Natβ 📖CompOp
2 mathmath: leftInverse_nat, rightInverse_nat
equivList 📖CompOp
equivNat 📖CompOp
instInhabitedListα 📖CompOp
instInhabitedListβCons 📖CompOp
instInhabitedNatα 📖CompOp
instInhabitedNatβSucc 📖CompOp
ofList 📖CompOp
2 mathmath: leftInverse_list, rightInverse_list
ofNat 📖CompOp
2 mathmath: leftInverse_nat, rightInverse_nat
toList 📖CompOp
2 mathmath: leftInverse_list, rightInverse_list
toNat 📖CompOp
2 mathmath: leftInverse_nat, rightInverse_nat

Theorems

NameKindAssumesProvesValidatesDepends On
NatαEquivPUnitSumPUnit_apply 📖mathematicalDFunLike.coe
Equiv
Natα
EquivLike.toFunLike
Equiv.instEquivLike
NatαEquivPUnitSumPUnit
NatαEquivPUnitSumPUnit_symm_apply 📖mathematicalDFunLike.coe
Equiv
Natα
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
NatαEquivPUnitSumPUnit
Natα.zero
Natα.succ
leftInverse_list 📖mathematicalWType
Listα
Listβ
ofList
toList
leftInverse_nat 📖mathematicalWType
Natα
Natβ
ofNat
toNat
toNat.eq_1
ofNat.eq_1
rightInverse_list 📖mathematicalWType
Listα
Listβ
ofList
toList
rightInverse_nat 📖mathematicalWType
Natα
Natβ
ofNat
toNat
ofNat.eq_2
toNat.eq_2

---

← Back to Index