Documentation Verification Report

ValMinAbs

πŸ“ Source: Mathlib/Data/ZMod/ValMinAbs.lean

Statistics

MetricCount
DefinitionsvalMinAbs
1
Theoremsabs_valMinAbs_eq_abs_valMinAbs, coe_valMinAbs, eq_neg_of_valMinAbs_eq_neg_valMinAbs, injective_valMinAbs, natAbs_valMinAbs_add_le, natAbs_valMinAbs_eq_natAbs_valMinAbs, natAbs_valMinAbs_le, natAbs_valMinAbs_neg, natCast_natAbs_valMinAbs, prime_ne_zero, valMinAbs_def_pos, valMinAbs_def_zero, valMinAbs_eq_zero, valMinAbs_inj, valMinAbs_mem_Ioc, valMinAbs_mul_two_eq_iff, valMinAbs_natAbs_eq_min, valMinAbs_natCast_eq_self, valMinAbs_natCast_of_half_lt, valMinAbs_natCast_of_le_half, valMinAbs_neg_of_ne_half, valMinAbs_nonneg_iff, valMinAbs_spec, valMinAbs_zero, val_eq_ite_valMinAbs
25
Total26

ZMod

Definitions

NameCategoryTheorems
valMinAbs πŸ“–CompOp
24 mathmath: injective_valMinAbs, natCast_natAbs_valMinAbs, valMinAbs_neg_of_ne_half, valMinAbs_def_pos, valMinAbs_mem_Ioc, valMinAbs_natCast_of_le_half, valMinAbs_natCast_of_half_lt, valMinAbs_nonneg_iff, valMinAbs_zero, natAbs_valMinAbs_eq_natAbs_valMinAbs, coe_valMinAbs, valMinAbs_natAbs_eq_min, valMinAbs_mul_two_eq_iff, valMinAbs_eq_zero, natAbs_valMinAbs_neg, val_eq_ite_valMinAbs, natAbs_valMinAbs_le, Ico_map_valMinAbs_natAbs_eq_Ico_map_id, abs_valMinAbs_eq_abs_valMinAbs, valMinAbs_natCast_eq_self, natAbs_valMinAbs_add_le, valMinAbs_def_zero, valMinAbs_inj, valMinAbs_spec

Theorems

NameKindAssumesProvesValidatesDepends On
abs_valMinAbs_eq_abs_valMinAbs πŸ“–mathematicalβ€”abs
instLatticeInt
Int.instAddGroup
valMinAbs
ZMod
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
commRing
β€”natAbs_valMinAbs_eq_natAbs_valMinAbs
Int.abs_eq_natAbs
Int.instCharZero
coe_valMinAbs πŸ“–mathematicalβ€”ZMod
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
commRing
valMinAbs
β€”valMinAbs_def_pos
Int.cast_natCast
natCast_zmod_val
Int.cast_sub
natCast_self
sub_zero
eq_neg_of_valMinAbs_eq_neg_valMinAbs πŸ“–mathematicalvalMinAbsZMod
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
commRing
β€”eq_zero_or_neZero
Int.cast_neg
coe_valMinAbs
neg_mul
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
injective_valMinAbs πŸ“–mathematicalβ€”ZMod
valMinAbs
β€”Function.injective_iff_hasLeftInverse
coe_valMinAbs
natAbs_valMinAbs_add_le πŸ“–mathematicalβ€”valMinAbs
ZMod
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
β€”le_refl
natAbs_min_of_le_div_two
Int.cast_add
coe_valMinAbs
natAbs_valMinAbs_le
natAbs_valMinAbs_eq_natAbs_valMinAbs πŸ“–mathematicalβ€”valMinAbs
ZMod
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
commRing
β€”eq_neg_of_valMinAbs_eq_neg_valMinAbs
natAbs_valMinAbs_neg
natAbs_valMinAbs_le πŸ“–mathematicalβ€”valMinAbsβ€”Nat.le_div_two_iff_mul_two_le
valMinAbs_mem_Ioc
neg_le_neg_iff
Int.instAddLeftMono
covariant_swap_add_of_covariant_add
neg_mul
LT.lt.le
natAbs_valMinAbs_neg πŸ“–mathematicalβ€”valMinAbs
ZMod
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
commRing
β€”neg_eq_self_iff
valMinAbs_neg_of_ne_half
natCast_natAbs_valMinAbs πŸ“–mathematicalβ€”ZMod
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
commRing
valMinAbs
val
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”sub_nonpos
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
val_le
valMinAbs_def_pos
natCast_zmod_val
Int.cast_natCast
Int.cast_neg
Int.cast_sub
natCast_self
sub_zero
prime_ne_zero πŸ“–β€”β€”β€”β€”Nat.cast_zero
natCast_eq_natCast_iff
Nat.modEq_zero_iff_dvd
Nat.Prime.coprime_iff_not_dvd
Fact.out
Nat.coprime_primes
valMinAbs_def_pos πŸ“–mathematicalβ€”valMinAbs
val
β€”β€”
valMinAbs_def_zero πŸ“–mathematicalβ€”valMinAbsβ€”β€”
valMinAbs_eq_zero πŸ“–mathematicalβ€”valMinAbs
ZMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
β€”injective_valMinAbs
valMinAbs_zero
valMinAbs_inj πŸ“–mathematicalβ€”valMinAbsβ€”injective_valMinAbs
valMinAbs_mem_Ioc πŸ“–mathematicalβ€”Set
Set.instMembership
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
valMinAbs
β€”valMinAbs_def_pos
LT.lt.trans_le
neg_lt_zero
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
Nat.cast_zero
Int.instZeroLEOneClass
Int.instCharZero
NeZero.pos
Nat.instCanonicallyOrderedAdd
mul_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Nat.cast_nonneg
zero_le_two
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
le_trans
mul_nonpos_of_nonpos_of_nonneg
IsOrderedRing.toMulPosMono
valMinAbs_mul_two_eq_iff πŸ“–mathematicalβ€”valMinAbs
val
β€”CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
IsStrictOrderedRing.noZeroDivisors
Int.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Nat.instAtLeastTwoHAddOfNat
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Nat.instCharZero
Nat.cast_mul
Nat.cast_two
mul_comm
Nat.cast_one
mul_nonneg_iff_left_nonneg_of_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toMulPosStrictMono
zero_lt_two
Int.instZeroLEOneClass
Int.instAddLeftMono
valMinAbs_nonneg_iff
Nat.cast_nonneg
IsStrictOrderedRing.toIsOrderedRing
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Eq.le
valMinAbs_natAbs_eq_min πŸ“–mathematicalβ€”valMinAbs
val
β€”valMinAbs_def_pos
val_lt
valMinAbs_natCast_eq_self πŸ“–mathematicalβ€”valMinAbs
ZMod
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
commRing
β€”natAbs_valMinAbs_le
valMinAbs_natCast_of_le_half
valMinAbs_natCast_of_half_lt πŸ“–mathematicalβ€”valMinAbs
ZMod
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
commRing
β€”not_lt_bot
valMinAbs_def_pos
val_natCast
LT.lt.not_ge
Nat.cast_add
Nat.cast_one
valMinAbs_natCast_of_le_half πŸ“–mathematicalβ€”valMinAbs
ZMod
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
commRing
β€”valMinAbs_def_pos
val_natCast
LE.le.trans_lt
Nat.div_lt_self'
valMinAbs_neg_of_ne_half πŸ“–mathematicalβ€”valMinAbs
ZMod
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
commRing
β€”eq_zero_or_neZero
valMinAbs_spec
Int.cast_neg
coe_valMinAbs
neg_mul
neg_lt_neg_iff
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
LE.le.lt_of_ne
valMinAbs_mem_Ioc
valMinAbs_mul_two_eq_iff
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.sub_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Int.instCharZero
Mathlib.Tactic.Linarith.sub_nonpos_of_le
valMinAbs_nonneg_iff πŸ“–mathematicalβ€”valMinAbs
val
β€”valMinAbs_def_pos
Nat.cast_nonneg
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
LT.lt.not_ge
sub_lt_zero
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
val_lt
valMinAbs_spec πŸ“–mathematicalβ€”valMinAbs
ZMod
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
CommRing.toRing
commRing
Set
Set.instMembership
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
instLatticeInt
β€”coe_valMinAbs
valMinAbs_mem_Ioc
sub_eq_zero
Int.eq_zero_of_abs_lt_dvd
intCast_zmod_eq_zero_iff_dvd
Int.cast_sub
sub_self
Nat.instAtLeastTwoHAddOfNat
mul_lt_mul_iff_leftβ‚€
IsStrictOrderedRing.toMulPosStrictMono
Int.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
zero_lt_two
Int.instZeroLEOneClass
Int.instAddLeftMono
abs_eq_self
Int.instIsOrderedAddMonoid
zero_le_two
abs_mul
IsStrictOrderedRing.toIsOrderedRing
sub_mul
abs_lt
covariant_swap_add_of_covariant_add
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
neg_neg_of_pos
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
valMinAbs_zero πŸ“–mathematicalβ€”valMinAbs
ZMod
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
β€”valMinAbs_def_pos
val_zero
Nat.instCanonicallyOrderedAdd
val_eq_ite_valMinAbs πŸ“–mathematicalβ€”val
valMinAbs
β€”valMinAbs_def_pos
natCast_val
CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
add_zero
sub_add_cancel

---

← Back to Index