π Source: Mathlib/Data/ZMod/ValMinAbs.lean
valMinAbs
abs_valMinAbs_eq_abs_valMinAbs
coe_valMinAbs
eq_neg_of_valMinAbs_eq_neg_valMinAbs
injective_valMinAbs
natAbs_valMinAbs_add_le
natAbs_valMinAbs_eq_natAbs_valMinAbs
natAbs_valMinAbs_le
natAbs_valMinAbs_neg
natCast_natAbs_valMinAbs
prime_ne_zero
valMinAbs_def_pos
valMinAbs_def_zero
valMinAbs_eq_zero
valMinAbs_inj
valMinAbs_mem_Ioc
valMinAbs_mul_two_eq_iff
valMinAbs_natAbs_eq_min
valMinAbs_natCast_eq_self
valMinAbs_natCast_of_half_lt
valMinAbs_natCast_of_le_half
valMinAbs_neg_of_ne_half
valMinAbs_nonneg_iff
valMinAbs_spec
valMinAbs_zero
val_eq_ite_valMinAbs
Ico_map_valMinAbs_natAbs_eq_Ico_map_id
abs
instLatticeInt
Int.instAddGroup
ZMod
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
CommRing.toRing
commRing
Int.abs_eq_natAbs
Int.instCharZero
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
Int.cast_natCast
natCast_zmod_val
Int.cast_sub
natCast_self
sub_zero
eq_zero_or_neZero
Int.cast_neg
neg_mul
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Int.instAddLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Function.injective_iff_hasLeftInverse
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
le_refl
natAbs_min_of_le_div_two
Int.cast_add
Nat.le_div_two_iff_mul_two_le
neg_le_neg_iff
LT.lt.le
neg_eq_self_iff
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
val
sub_nonpos
val_le
Nat.cast_zero
natCast_eq_natCast_iff
Nat.modEq_zero_iff_dvd
Nat.Prime.coprime_iff_not_dvd
Fact.out
Nat.coprime_primes
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Set
Set.instMembership
Set.Ioc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
LT.lt.trans_le
neg_lt_zero
Int.instZeroLEOneClass
NeZero.pos
Nat.instCanonicallyOrderedAdd
mul_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Int.instIsStrictOrderedRing
Nat.cast_nonneg
zero_le_two
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
le_trans
mul_nonpos_of_nonpos_of_nonneg
IsOrderedRing.toMulPosMono
CharP.cast_eq_zero
CharP.ofCharZero
IsStrictOrderedRing.noZeroDivisors
AddGroup.existsAddOfLE
Nat.instAtLeastTwoHAddOfNat
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCharZero
Nat.cast_mul
Nat.cast_two
mul_comm
Nat.cast_one
mul_nonneg_iff_left_nonneg_of_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toMulPosStrictMono
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Eq.le
val_lt
not_lt_bot
val_natCast
LT.lt.not_ge
Nat.cast_add
LE.le.trans_lt
Nat.div_lt_self'
neg_lt_neg_iff
LE.le.lt_of_ne
le_of_not_gt
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Meta.NormNum.isNat_lt_true
sub_lt_zero
sub_eq_zero
Int.eq_zero_of_abs_lt_dvd
intCast_zmod_eq_zero_iff_dvd
sub_self
mul_lt_mul_iff_leftβ
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
abs_eq_self
abs_mul
sub_mul
abs_lt
val_zero
natCast_val
add_zero
sub_add_cancel
---
β Back to Index