Documentation Verification Report

OmegaLimit

📁 Source: Mathlib/Dynamics/OmegaLimit.lean

Statistics

MetricCount
DefinitionsinstInhabitedElemSetSets, omegaLimit, termω, «termω⁺», «termω⁻»
5
TheoremsisInvariant_omegaLimit, omegaLimit_image_eq, omegaLimit_image_subset, omegaLimit_omegaLimit, eventually_closure_subset_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset, eventually_closure_subset_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset', eventually_closure_subset_of_isOpen_of_omegaLimit_subset, eventually_mapsTo_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset, eventually_mapsTo_of_isOpen_of_omegaLimit_subset, isClosed_omegaLimit, mapsTo_omegaLimit, mapsTo_omegaLimit', mem_omegaLimit_iff_frequently, mem_omegaLimit_iff_frequently₂, mem_omegaLimit_singleton_iff_map_cluster_point, nonempty_omegaLimit, nonempty_omegaLimit_of_isCompact_absorbing, omegaLimit_def, omegaLimit_eq_biInter_inter, omegaLimit_eq_iInter, omegaLimit_eq_iInter_inter, omegaLimit_iInter, omegaLimit_iUnion, omegaLimit_image_eq, omegaLimit_inter, omegaLimit_mono_left, omegaLimit_mono_right, omegaLimit_preimage_subset, omegaLimit_subset_closure_fw_image, omegaLimit_subset_of_tendsto, omegaLimit_union
31
Total36

Flow

Theorems

NameKindAssumesProvesValidatesDepends On
isInvariant_omegaLimit 📖mathematicalFilter.Tendsto
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
IsInvariant
toFun
omegaLimit
Set.MapsTo.mono_right
mapsTo_omegaLimit
Set.mapsTo_id
map_add
Continuous.flow
continuous_const
continuous_id
omegaLimit_subset_of_tendsto
omegaLimit_image_eq 📖mathematicalFilter.Tendsto
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
omegaLimit
toFun
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
IsTopologicalAddGroup.toContinuousAdd
Set.image
IsTopologicalAddGroup.toContinuousAdd
Set.Subset.antisymm
omegaLimit_image_subset
Set.image_image
Set.image_congr
neg_add_cancel
map_zero
Set.image_id'
omegaLimit_image_subset 📖mathematicalFilter.Tendsto
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
Set
Set.instHasSubset
omegaLimit
toFun
Set.image
omegaLimit_image_eq
omegaLimit_subset_of_tendsto
omegaLimit_omegaLimit 📖mathematicalFilter.Tendsto
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
Set
Set.instHasSubset
omegaLimit
toFun
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
IsTopologicalAddGroup.toContinuousAdd
IsTopologicalAddGroup.toContinuousAdd
mem_nhds_iff
IsOpen.mem_nhds
Set.Nonempty.mono
Set.inter_subset_inter_left
isInvariant_iff_image
isInvariant_omegaLimit
omegaLimit_subset_closure_fw_image
mem_closure_iff_nhds

(root)

Definitions

NameCategoryTheorems
instInhabitedElemSetSets 📖CompOp
omegaLimit 📖CompOp
26 mathmath: omegaLimit_preimage_subset, omegaLimit_union, omegaLimit_iUnion, omegaLimit_def, Flow.omegaLimit_image_eq, omegaLimit_mono_right, nonempty_omegaLimit_of_isCompact_absorbing, omegaLimit_subset_of_tendsto, omegaLimit_image_eq, Flow.omegaLimit_image_subset, mapsTo_omegaLimit, omegaLimit_inter, omegaLimit_eq_biInter_inter, mem_omegaLimit_iff_frequently, mapsTo_omegaLimit', nonempty_omegaLimit, mem_omegaLimit_iff_frequently₂, omegaLimit_mono_left, isClosed_omegaLimit, Flow.omegaLimit_omegaLimit, omegaLimit_iInter, omegaLimit_subset_closure_fw_image, omegaLimit_eq_iInter, omegaLimit_eq_iInter_inter, mem_omegaLimit_singleton_iff_map_cluster_point, Flow.isInvariant_omegaLimit

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_closure_subset_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset 📖mathematicalIsCompact
Filter.Eventually
Set.MapsTo
IsOpen
Set
Set.instHasSubset
omegaLimit
Filter
Filter.instMembership
closure
Set.image2
eventually_closure_subset_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset'
closure_minimal
Set.image2_subset_iff
IsCompact.isClosed
eventually_closure_subset_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset' 📖IsCompact
Set
Filter
Filter.instMembership
Set.instHasSubset
closure
Set.image2
IsOpen
omegaLimit
IsCompact.diff
IsCompact.of_isClosed_subset
isClosed_closure
isOpen_compl_iff
Set.biUnion_eq_iUnion
Set.diff_subset_comm
Set.diff_iUnion
Set.diff_compl
Set.inter_iInter
Set.Subset.trans
Set.inter_subset_right
omegaLimit_eq_iInter_inter
IsCompact.elim_finite_subcover_image
Set.iUnion_congr_Prop
closure_mono
Set.image2_subset
Set.inter_subset_inter
Set.iInter_subset_of_subset
Set.Subset.rfl
subset_refl
Set.instReflSubset
Set.union_comm
Set.inter_subset
Set.diff_eq
Set.inter_comm
Set.compl_subset_compl
Set.union_subset
eventually_closure_subset_of_isOpen_of_omegaLimit_subset 📖mathematicalIsOpen
Set
Set.instHasSubset
omegaLimit
Filter
Filter.instMembership
closure
Set.image2
eventually_closure_subset_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset'
isCompact_univ
Filter.univ_mem
Set.subset_univ
eventually_mapsTo_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset 📖IsCompact
Filter.Eventually
Set.MapsTo
IsOpen
Set
Set.instHasSubset
omegaLimit
eventually_closure_subset_of_isCompact_absorbing_of_isOpen_of_omegaLimit_subset
Filter.mem_of_superset
subset_closure
Set.mem_image2_of_mem
eventually_mapsTo_of_isOpen_of_omegaLimit_subset 📖mathematicalIsOpen
Set
Set.instHasSubset
omegaLimit
Filter.Eventually
Set.MapsTo
eventually_closure_subset_of_isOpen_of_omegaLimit_subset
Filter.mem_of_superset
subset_closure
Set.mem_image2_of_mem
isClosed_omegaLimit 📖mathematicalIsClosed
omegaLimit
isClosed_iInter
isClosed_closure
mapsTo_omegaLimit 📖mathematicalSet.MapsTo
Continuous
omegaLimitmapsTo_omegaLimit'
Filter.Eventually.of_forall
mapsTo_omegaLimit' 📖mathematicalSet.MapsTo
Filter.Eventually
Set.EqOn
Continuous
omegaLimitmap_mem_closure
Filter.inter_mem
Set.forall_mem_image2
Set.mem_image2_of_mem
mem_omegaLimit_iff_frequently 📖mathematicalSet
Set.instMembership
omegaLimit
Filter.Frequently
Set.Nonempty
Set.instInter
Set.preimage
Set.mem_preimage
mem_omegaLimit_iff_frequently₂ 📖mathematicalSet
Set.instMembership
omegaLimit
Filter.Frequently
Set.Nonempty
Set.instInter
Set.image
mem_omegaLimit_singleton_iff_map_cluster_point 📖mathematicalSet
Set.instMembership
omegaLimit
Set.instSingletonSet
MapClusterPt
nonempty_omegaLimit 📖mathematicalSet.NonemptyomegaLimitnonempty_omegaLimit_of_isCompact_absorbing
isCompact_univ
Filter.univ_mem
Set.subset_univ
nonempty_omegaLimit_of_isCompact_absorbing 📖mathematicalIsCompact
Set
Filter
Filter.instMembership
Set.instHasSubset
closure
Set.image2
Set.Nonempty
omegaLimitomegaLimit_eq_iInter_inter
IsCompact.nonempty_iInter_of_directed_nonempty_isCompact_isClosed
Filter.inter_mem
closure_mono
Set.image2_subset
Set.inter_subset_inter_left
Set.Subset.rfl
Set.Nonempty.image2
Filter.nonempty_of_mem
Subtype.prop
Set.Nonempty.mono
subset_closure
IsCompact.of_isClosed_subset
isClosed_closure
Set.inter_subset_right
omegaLimit_def 📖mathematicalomegaLimit
Set.iInter
Set
Filter
Filter.instMembership
closure
Set.image2
omegaLimit_eq_biInter_inter 📖mathematicalSet
Filter
Filter.instMembership
omegaLimit
Set.iInter
closure
Set.image2
Set.instInter
Set.Subset.antisymm
Set.iInter₂_mono'
Filter.inter_mem
Set.Subset.rfl
Set.iInter₂_mono
closure_mono
Set.image2_subset
Set.inter_subset_left
omegaLimit_eq_iInter 📖mathematicalomegaLimit
Set.iInter
Set.Elem
Set
Filter.sets
closure
Set.image2
Set.instMembership
Set.biInter_eq_iInter
omegaLimit_eq_iInter_inter 📖mathematicalSet
Filter
Filter.instMembership
omegaLimit
Set.iInter
Set.Elem
Filter.sets
closure
Set.image2
Set.instInter
Set.instMembership
omegaLimit_eq_biInter_inter
Set.biInter_eq_iInter
omegaLimit_iInter 📖mathematicalSet
Set.instHasSubset
omegaLimit
Set.iInter
Set.subset_iInter
omegaLimit_mono_right
Set.iInter_subset
omegaLimit_iUnion 📖mathematicalSet
Set.instHasSubset
Set.iUnion
omegaLimit
Set.iUnion_subset_iff
omegaLimit_mono_right
Set.subset_iUnion
omegaLimit_image_eq 📖mathematicalomegaLimit
Set.image
Set.iInter_congr_Prop
Set.image2_image_right
omegaLimit_inter 📖mathematicalSet
Set.instHasSubset
omegaLimit
Set.instInter
Set.subset_inter
omegaLimit_mono_right
Set.inter_subset_left
Set.inter_subset_right
omegaLimit_mono_left 📖mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Set
Set.instHasSubset
omegaLimit
omegaLimit_subset_of_tendsto
Filter.tendsto_id'
omegaLimit_mono_right 📖mathematicalSet
Set.instHasSubset
omegaLimitSet.iInter₂_mono
closure_mono
Set.image2_subset
Set.Subset.rfl
omegaLimit_preimage_subset 📖mathematicalSet
Set.instHasSubset
omegaLimit
Set.preimage
mapsTo_omegaLimit
Set.mapsTo_preimage
continuous_id
omegaLimit_subset_closure_fw_image 📖mathematicalSet
Filter
Filter.instMembership
Set.instHasSubset
omegaLimit
closure
Set.image2
omegaLimit_eq_iInter
Set.mem_iInter
omegaLimit_subset_of_tendsto 📖mathematicalFilter.TendstoSet
Set.instHasSubset
omegaLimit
Set.iInter₂_mono'
Filter.tendsto_def
Set.image2_image_left
closure_mono
Set.image2_subset
Set.image_preimage_subset
Set.Subset.rfl
omegaLimit_union 📖mathematicalomegaLimit
Set
Set.instUnion
Set.ext
Set.union_inter_distrib_right
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
Filter.inter_mem
Filter.Eventually.mono
Set.Subset.trans
Set.inter_subset_inter_right
Set.preimage_mono
Set.inter_subset_left
Set.inter_subset_right
omegaLimit_mono_right
Set.subset_union_left
Set.subset_union_right

omegaLimit

Definitions

NameCategoryTheorems
termω 📖CompOp
«termω⁺» 📖CompOp
«termω⁻» 📖CompOp

---

← Back to Index