π Source: Mathlib/Dynamics/TopologicalEntropy/CoverEntropy.lean
IsDynCoverOf
coverEntropy
coverEntropyEntourage
coverEntropyInf
coverEntropyInfEntourage
coverMincard
coverEntropyEntourage_le_log_card_div
coverMincard_le_card
iterate_le_pow
nonempty
nonempty_inter
of_entourage_subset
of_le
coverEntropyEntourage_antitone
coverEntropyEntourage_empty
coverEntropyEntourage_finite_of_isCompact_invariant
coverEntropyEntourage_le_coverEntropy
coverEntropyEntourage_le_coverEntropyInfEntourage
coverEntropyEntourage_le_log_coverMincard_div
coverEntropyEntourage_nonneg
coverEntropyEntourage_univ
coverEntropyInfEntourage_antitone
coverEntropyInfEntourage_empty
coverEntropyInfEntourage_le_coverEntropyEntourage
coverEntropyInfEntourage_le_coverEntropyInf
coverEntropyInfEntourage_nonneg
coverEntropyInfEntourage_univ
coverEntropyInf_antitone
coverEntropyInf_empty
coverEntropyInf_eq_coverEntropy
coverEntropyInf_eq_iSup_basis
coverEntropyInf_le_coverEntropy
coverEntropyInf_nonneg
coverEntropy_antitone
coverEntropy_empty
coverEntropy_eq_iSup_basis
coverEntropy_nonneg
coverMincard_antitone
coverMincard_empty
coverMincard_eq_zero_iff
coverMincard_finite_iff
coverMincard_finite_of_isCompact_invariant
coverMincard_finite_of_isCompact_uniformContinuous
coverMincard_le_pow
coverMincard_monotone_time
coverMincard_mul_le_pow
coverMincard_univ
coverMincard_zero
exists_isDynCoverOf_of_isCompact_invariant
exists_isDynCoverOf_of_isCompact_uniformContinuous
isDynCoverOf_empty
isDynCoverOf_empty_right
isDynCoverOf_univ
isDynCoverOf_zero
nonempty_inter_of_coverMincard
one_le_coverMincard_iff
coverEntropy_restrict
coverEntropy_iUnion_le
coverEntropy_monotone
coverEntropy_union
coverEntropy_restrict_subset
coverEntropy_biUnion_finset
coverEntropy_iUnion_of_finite
coverEntropy_image_le_of_uniformContinuousOn_invariant
coverEntropy_image_le_of_uniformContinuous
coverEntropy_closure
coverEntropy_eq_iSup_basis_netEntropyEntourage
coverEntropy_biUnion_le
coverEntropy_eq_iSup_netEntropyEntourage
netEntropyEntourage_le_coverEntropy
coverEntropy_image_of_comap
netEntropyEntourage_le_coverEntropyEntourage
coverEntropyEntourage_union
coverEntropyEntourage_le_netEntropyEntourage
coverEntropyEntourage_image_le
le_coverEntropyEntourage_image
coverEntropyEntourage_monotone
IsDynCoverOf.coverEntropyEntourage_le_log_card_div
coverEntropyEntourage_closure
coverEntropyInf_image_of_comap
coverEntropyInf_closure
coverEntropyInf_eq_iSup_netEntropyInfEntourage
coverEntropyInf_image_le_of_uniformContinuous
coverEntropyInf_monotone
coverEntropyInf_eq_iSup_basis_netEntropyInfEntourage
netEntropyInfEntourage_le_coverEntropyInf
coverEntropyInf_iUnion_le
coverEntropyInf_biUnion_le
coverEntropyInf_image_le_of_uniformContinuousOn_invariant
coverEntropyInf_restrict_subset
coverEntropyInfEntourage_le_netEntropyInfEntourage
netEntropyInfEntourage_le_coverEntropyInfEntourage
coverEntropyInfEntourage_image_le
coverEntropyInfEntourage_closure
le_coverEntropyInfEntourage_image
coverEntropyInfEntourage_monotone
netMaxcard_le_coverMincard
coverMincard_image_le
coverMincard_closure_le
IsDynCoverOf.coverMincard_le_card
coverMincard_union_le
coverMincard_le_netMaxcard
le_coverMincard_image
coverMincard_monotone_subset
Antitone
SetRel
EReal
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrderEReal
ExpGrowth.expGrowthSup_monotone
ENat.toENNReal_mono
Set
Set.instEmptyCollection
Bot.bot
instBotEReal
ENat.toENNReal_zero
Pi.zero_def
ExpGrowth.expGrowthSup_zero
IsCompact
UniformSpace.toTopologicalSpace
Set.MapsTo
Filter
Filter.instMembership
uniformity
Preorder.toLT
Top.top
EReal.instTop
comp_symm_mem_uniformity_sets
LE.le.trans_lt
one_ne_zero
Nat.cast_one
div_one
ENNReal.log_lt_top_iff
ENat.toENNReal_top
Ne.lt_top
ENat.coe_ne_top
Preorder.toLE
le_iSupβ
SetRel.comp
Filter.le_liminf_of_le
Filter.isCobounded_ge_of_top
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
DivInvMonoid.toDiv
EReal.instDivInvMonoid
ENNReal.log
ENat.toENNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneEReal
Monotone.expGrowthSup_comp_mul
coverEntropyEntourage.eq_1
EReal.div_eq_iff
EReal.natCast_ne_bot
EReal.natCast_ne_top
Nat.cast_ne_zero
instCharZeroEReal
mul_comm
EReal.monotone_div_right_of_nonneg
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoidEReal
instZeroLEOneClassEReal
ExpGrowth.expGrowthSup_pow
ENat.toENNReal_pow
Set.Nonempty
instZeroEReal
LE.le.trans
Set.univ
ExpGrowth.expGrowthSup_const
NeZero.charZero_one
ENNReal.instCharZero
ENNReal.one_ne_top
ENat.toENNReal_one
ExpGrowth.expGrowthInf_monotone
eq_bot_mono
ExpGrowth.expGrowthInf_le_expGrowthSup
Monotone.expGrowthInf_nonneg
Iff.not
Pi.zero_apply
ExpGrowth.expGrowthInf_const
coverEntropyInfEntourage.eq_1
UniformSpace
instPartialOrderUniformSpace
iSupβ_mono'
Filter.le_def
le_refl
iSup_congr_Prop
iSup_bot
le_antisymm
iSupβ_le
le_iSupβ_of_le
Filter.HasBasis
iSup
instSupSetEReal
LE.le.antisymm
Filter.HasBasis.mem_iff
Filter.HasBasis.mem_of_mem
iSupβ_mono
LE.le.trans_eq'
Filter.univ_mem
ENat
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
biInf_mono
IsDynCoverOf.of_entourage_subset
instZeroENat
sInf_le
iInf_congr_Prop
iInf_pos
zero_le
Finset.coe_empty
instTopENat
SetLike.coe
Finset
Finset.instSetLike
ENat.instNatCast
Finset.card
WithTop.ne_top_iff_exists
LT.lt.ne
ENat.some_eq_coe
coverMincard.eq_1
iInfβ_eq_top
nonempty_subtype
ciInf_mem
Set.mem_range
iInf_subtype'
WithTop.coe_lt_top
UniformContinuous
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
instCommSemiringENat
LT.lt.le
Monotone
Nat.instPreorder
IsDynCoverOf.of_le
Set.eq_empty_or_nonempty
eq_or_ne
MulZeroClass.mul_zero
pow_zero
eq_top_or_lt_top
ENat.top_pow
IsDynCoverOf.iterate_le_pow
WithTop.coe_le_coe
AddMonoidWithOne.toOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
Set.singleton_nonempty
LE.le.trans_eq
Finset.coe_singleton
Finset.card_singleton
IsCompact.elim_nhds_subcover
UniformSpace.ball_mem_nhds
SetRel.IsCover.of_subset_iUnion_ball
isSymm_dynEntourage
Set.iUnion_congr_Prop
dynEntourage_one
one_mul
symm_of_uniformity
dynEntourage_mem_uniformity
SetRel.IsCover.empty
dynEntourage_univ
dynEntourage_zero
Finset.instMembership
Set.instInter
UniformSpace.ball
dynEntourage
Mathlib.Tactic.Push.not_forall_eq
Finset.coe_erase
Finset.mem_coe
Set.notMem_empty
Set.mem_inter
SetRel.symm
LE.le.not_gt
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Finset.card_erase_lt_of_mem
ENat.one_le_iff_ne_zero
Set.nonempty_iff_ne_empty
not_iff_not
Dynamics.IsDynCoverOf
Dynamics.coverEntropyEntourage
ENNReal
instAddCommMonoidWithOneENNReal
Dynamics.coverEntropyEntourage_le_log_coverMincard_div
ENNReal.log_monotone
Dynamics.coverMincard
iInfβ_le
Nat.instMonoid
Nat.instCanonicallyOrderedAdd
MulZeroClass.zero_mul
Dynamics.isDynCoverOf_zero
one_le_pow_of_one_le'
Nat.instMulLeftMono
Finset.Nonempty.card_pos
Set.empty_subset
Set.iInter_congr_Prop
Prod.map_iterate
UniformSpace.mem_comp_of_mem_ball
Function.iterate_add_apply
Finset.Nonempty.coe_sort
Finset.coe_nonempty
Set.MapsTo.iterate
Dynamics.isSymm_dynEntourage
Set.toFinset_range
Finset.coe_image
Finset.coe_univ
Set.image_univ
SetRel.isSymm_comp_self
Set.toFinset_card
Fintype.card_range_le
Fintype.card_fun
Fintype.card_coe
Fintype.card_fin
SetRel.IsCover.nonempty
Dynamics.dynEntourage
Finset.coe_filter
Finset.card_mono
Finset.filter_subset
Set.instHasSubset
SetRel.IsCover.mono_entourage
Dynamics.dynEntourage_mono
subset_refl
Set.instReflSubset
---
β Back to Index