Documentation Verification Report

CoverEntropy

πŸ“ Source: Mathlib/Dynamics/TopologicalEntropy/CoverEntropy.lean

Statistics

MetricCount
DefinitionsIsDynCoverOf, coverEntropy, coverEntropyEntourage, coverEntropyInf, coverEntropyInfEntourage, coverMincard
6
TheoremscoverEntropyEntourage_le_log_card_div, coverMincard_le_card, iterate_le_pow, nonempty, nonempty_inter, of_entourage_subset, of_le, coverEntropyEntourage_antitone, coverEntropyEntourage_empty, coverEntropyEntourage_finite_of_isCompact_invariant, coverEntropyEntourage_le_coverEntropy, coverEntropyEntourage_le_coverEntropyInfEntourage, coverEntropyEntourage_le_log_coverMincard_div, coverEntropyEntourage_nonneg, coverEntropyEntourage_univ, coverEntropyInfEntourage_antitone, coverEntropyInfEntourage_empty, coverEntropyInfEntourage_le_coverEntropyEntourage, coverEntropyInfEntourage_le_coverEntropyInf, coverEntropyInfEntourage_nonneg, coverEntropyInfEntourage_univ, coverEntropyInf_antitone, coverEntropyInf_empty, coverEntropyInf_eq_coverEntropy, coverEntropyInf_eq_iSup_basis, coverEntropyInf_le_coverEntropy, coverEntropyInf_nonneg, coverEntropy_antitone, coverEntropy_empty, coverEntropy_eq_iSup_basis, coverEntropy_nonneg, coverMincard_antitone, coverMincard_empty, coverMincard_eq_zero_iff, coverMincard_finite_iff, coverMincard_finite_of_isCompact_invariant, coverMincard_finite_of_isCompact_uniformContinuous, coverMincard_le_pow, coverMincard_monotone_time, coverMincard_mul_le_pow, coverMincard_univ, coverMincard_zero, exists_isDynCoverOf_of_isCompact_invariant, exists_isDynCoverOf_of_isCompact_uniformContinuous, isDynCoverOf_empty, isDynCoverOf_empty_right, isDynCoverOf_univ, isDynCoverOf_zero, nonempty_inter_of_coverMincard, one_le_coverMincard_iff
50
Total56

Dynamics

Definitions

NameCategoryTheorems
IsDynCoverOf πŸ“–MathDef
7 mathmath: isDynCoverOf_univ, isDynCoverOf_empty, isDynCoverOf_zero, exists_isDynCoverOf_of_isCompact_uniformContinuous, coverMincard_finite_iff, isDynCoverOf_empty_right, exists_isDynCoverOf_of_isCompact_invariant
coverEntropy πŸ“–CompOp
22 mathmath: coverEntropy_restrict, coverEntropy_iUnion_le, coverEntropy_monotone, coverEntropy_union, coverEntropy_restrict_subset, coverEntropy_biUnion_finset, coverEntropy_antitone, coverEntropy_iUnion_of_finite, coverEntropy_image_le_of_uniformContinuousOn_invariant, coverEntropy_image_le_of_uniformContinuous, coverEntropy_nonneg, coverEntropy_eq_iSup_basis, coverEntropy_closure, coverEntropy_eq_iSup_basis_netEntropyEntourage, coverEntropy_biUnion_le, coverEntropy_eq_iSup_netEntropyEntourage, coverEntropyEntourage_le_coverEntropy, netEntropyEntourage_le_coverEntropy, coverEntropy_image_of_comap, coverEntropy_empty, coverEntropyInf_le_coverEntropy, coverEntropyInf_eq_coverEntropy
coverEntropyEntourage πŸ“–CompOp
18 mathmath: coverEntropyEntourage_le_coverEntropyInfEntourage, netEntropyEntourage_le_coverEntropyEntourage, coverEntropyEntourage_univ, coverEntropyEntourage_union, coverEntropyEntourage_le_netEntropyEntourage, coverEntropyInfEntourage_le_coverEntropyEntourage, coverEntropyEntourage_image_le, le_coverEntropyEntourage_image, coverEntropyEntourage_monotone, IsDynCoverOf.coverEntropyEntourage_le_log_card_div, coverEntropyEntourage_finite_of_isCompact_invariant, coverEntropyEntourage_le_log_coverMincard_div, coverEntropyEntourage_antitone, coverEntropy_eq_iSup_basis, coverEntropyEntourage_nonneg, coverEntropyEntourage_closure, coverEntropyEntourage_le_coverEntropy, coverEntropyEntourage_empty
coverEntropyInf πŸ“–CompOp
18 mathmath: coverEntropyInf_image_of_comap, coverEntropyInf_closure, coverEntropyInf_eq_iSup_netEntropyInfEntourage, coverEntropyInfEntourage_le_coverEntropyInf, coverEntropyInf_image_le_of_uniformContinuous, coverEntropyInf_monotone, coverEntropyInf_nonneg, coverEntropyInf_antitone, coverEntropyInf_eq_iSup_basis_netEntropyInfEntourage, netEntropyInfEntourage_le_coverEntropyInf, coverEntropyInf_iUnion_le, coverEntropyInf_empty, coverEntropyInf_biUnion_le, coverEntropyInf_image_le_of_uniformContinuousOn_invariant, coverEntropyInf_eq_iSup_basis, coverEntropyInf_le_coverEntropy, coverEntropyInf_restrict_subset, coverEntropyInf_eq_coverEntropy
coverEntropyInfEntourage πŸ“–CompOp
14 mathmath: coverEntropyInfEntourage_le_netEntropyInfEntourage, coverEntropyEntourage_le_coverEntropyInfEntourage, coverEntropyInfEntourage_antitone, coverEntropyInfEntourage_univ, coverEntropyInfEntourage_le_coverEntropyInf, coverEntropyInfEntourage_le_coverEntropyEntourage, netEntropyInfEntourage_le_coverEntropyInfEntourage, coverEntropyInfEntourage_image_le, coverEntropyInfEntourage_closure, le_coverEntropyInfEntourage_image, coverEntropyInfEntourage_nonneg, coverEntropyInfEntourage_empty, coverEntropyInf_eq_iSup_basis, coverEntropyInfEntourage_monotone
coverMincard πŸ“–CompOp
21 mathmath: coverMincard_eq_zero_iff, netMaxcard_le_coverMincard, coverMincard_finite_of_isCompact_invariant, coverMincard_image_le, coverMincard_univ, coverMincard_empty, one_le_coverMincard_iff, coverMincard_monotone_time, coverMincard_closure_le, coverMincard_finite_of_isCompact_uniformContinuous, IsDynCoverOf.coverMincard_le_card, coverMincard_antitone, coverMincard_zero, coverMincard_union_le, coverEntropyEntourage_le_log_coverMincard_div, coverMincard_le_pow, coverMincard_mul_le_pow, coverMincard_le_netMaxcard, coverMincard_finite_iff, le_coverMincard_image, coverMincard_monotone_subset

Theorems

NameKindAssumesProvesValidatesDepends On
coverEntropyEntourage_antitone πŸ“–mathematicalβ€”Antitone
SetRel
EReal
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrderEReal
coverEntropyEntourage
β€”ExpGrowth.expGrowthSup_monotone
ENat.toENNReal_mono
coverMincard_antitone
coverEntropyEntourage_empty πŸ“–mathematicalβ€”coverEntropyEntourage
Set
Set.instEmptyCollection
Bot.bot
EReal
instBotEReal
β€”coverMincard_empty
ENat.toENNReal_zero
Pi.zero_def
ExpGrowth.expGrowthSup_zero
coverEntropyEntourage_finite_of_isCompact_invariant πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
Set.MapsTo
SetRel
Filter
Filter.instMembership
uniformity
EReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyEntourage
Top.top
EReal.instTop
β€”comp_symm_mem_uniformity_sets
exists_isDynCoverOf_of_isCompact_invariant
LE.le.trans_lt
coverEntropyEntourage_antitone
IsDynCoverOf.coverEntropyEntourage_le_log_card_div
one_ne_zero
Nat.cast_one
div_one
ENNReal.log_lt_top_iff
ENat.toENNReal_top
Ne.lt_top
ENat.coe_ne_top
coverEntropyEntourage_le_coverEntropy πŸ“–mathematicalSetRel
Filter
Filter.instMembership
uniformity
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyEntourage
coverEntropy
β€”le_iSupβ‚‚
coverEntropyEntourage_le_coverEntropyInfEntourage πŸ“–mathematicalSet.MapsToEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyEntourage
SetRel.comp
coverEntropyInfEntourage
β€”Filter.le_liminf_of_le
Filter.isCobounded_ge_of_top
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
coverEntropyEntourage_le_log_coverMincard_div
coverEntropyEntourage_le_log_coverMincard_div πŸ“–mathematicalSet.MapsToEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyEntourage
SetRel.comp
DivInvMonoid.toDiv
EReal.instDivInvMonoid
ENNReal.log
ENat.toENNReal
coverMincard
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneEReal
β€”ENat.toENNReal_mono
coverMincard_monotone_time
Monotone.expGrowthSup_comp_mul
coverEntropyEntourage.eq_1
EReal.div_eq_iff
EReal.natCast_ne_bot
EReal.natCast_ne_top
Nat.cast_ne_zero
instCharZeroEReal
mul_comm
EReal.monotone_div_right_of_nonneg
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoidEReal
instZeroLEOneClassEReal
ExpGrowth.expGrowthSup_pow
ExpGrowth.expGrowthSup_monotone
ENat.toENNReal_pow
coverMincard_mul_le_pow
coverEntropyEntourage_nonneg πŸ“–mathematicalSet.NonemptyEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
coverEntropyEntourage
β€”LE.le.trans
coverEntropyInfEntourage_nonneg
coverEntropyInfEntourage_le_coverEntropyEntourage
coverEntropyEntourage_univ πŸ“–mathematicalSet.NonemptycoverEntropyEntourage
Set.univ
EReal
instZeroEReal
β€”ExpGrowth.expGrowthSup_const
one_ne_zero
NeZero.charZero_one
ENNReal.instCharZero
ENNReal.one_ne_top
coverEntropyEntourage.eq_1
coverMincard_univ
ENat.toENNReal_one
coverEntropyInfEntourage_antitone πŸ“–mathematicalβ€”Antitone
SetRel
EReal
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrderEReal
coverEntropyInfEntourage
β€”ExpGrowth.expGrowthInf_monotone
ENat.toENNReal_mono
coverMincard_antitone
coverEntropyInfEntourage_empty πŸ“–mathematicalβ€”coverEntropyInfEntourage
Set
Set.instEmptyCollection
Bot.bot
EReal
instBotEReal
β€”eq_bot_mono
coverEntropyInfEntourage_le_coverEntropyEntourage
coverEntropyEntourage_empty
coverEntropyInfEntourage_le_coverEntropyEntourage πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyInfEntourage
coverEntropyEntourage
β€”ExpGrowth.expGrowthInf_le_expGrowthSup
coverEntropyInfEntourage_le_coverEntropyInf πŸ“–mathematicalSetRel
Filter
Filter.instMembership
uniformity
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyInfEntourage
coverEntropyInf
β€”le_iSupβ‚‚
coverEntropyInfEntourage_nonneg πŸ“–mathematicalSet.NonemptyEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
coverEntropyInfEntourage
β€”Monotone.expGrowthInf_nonneg
ENat.toENNReal_mono
coverMincard_monotone_time
Iff.not
coverMincard_zero
Pi.zero_apply
ENat.toENNReal_one
one_ne_zero
NeZero.charZero_one
ENNReal.instCharZero
coverEntropyInfEntourage_univ πŸ“–mathematicalSet.NonemptycoverEntropyInfEntourage
Set.univ
EReal
instZeroEReal
β€”ExpGrowth.expGrowthInf_const
one_ne_zero
NeZero.charZero_one
ENNReal.instCharZero
ENNReal.one_ne_top
coverEntropyInfEntourage.eq_1
coverMincard_univ
ENat.toENNReal_one
coverEntropyInf_antitone πŸ“–mathematicalβ€”Antitone
UniformSpace
EReal
PartialOrder.toPreorder
instPartialOrderUniformSpace
instPartialOrderEReal
coverEntropyInf
β€”iSupβ‚‚_mono'
Filter.le_def
le_refl
coverEntropyInf_empty πŸ“–mathematicalβ€”coverEntropyInf
Set
Set.instEmptyCollection
Bot.bot
EReal
instBotEReal
β€”iSup_congr_Prop
coverEntropyInfEntourage_empty
iSup_bot
coverEntropyInf_eq_coverEntropy πŸ“–mathematicalSet.MapsTocoverEntropyInf
coverEntropy
β€”le_antisymm
coverEntropyInf_le_coverEntropy
iSupβ‚‚_le
comp_symm_mem_uniformity_sets
LE.le.trans
coverEntropyEntourage_antitone
le_iSupβ‚‚_of_le
coverEntropyEntourage_le_coverEntropyInfEntourage
coverEntropyInf_eq_iSup_basis πŸ“–mathematicalFilter.HasBasis
uniformity
coverEntropyInf
iSup
EReal
instSupSetEReal
coverEntropyInfEntourage
β€”LE.le.antisymm
iSupβ‚‚_le
Filter.HasBasis.mem_iff
LE.le.trans
coverEntropyInfEntourage_antitone
le_iSupβ‚‚
iSupβ‚‚_mono'
Filter.HasBasis.mem_of_mem
le_refl
coverEntropyInf_le_coverEntropy πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyInf
coverEntropy
β€”iSupβ‚‚_mono
coverEntropyInfEntourage_le_coverEntropyEntourage
coverEntropyInf_nonneg πŸ“–mathematicalSet.NonemptyEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
coverEntropyInf
β€”LE.le.trans_eq'
coverEntropyInfEntourage_le_coverEntropyInf
Filter.univ_mem
coverEntropyInfEntourage_univ
coverEntropy_antitone πŸ“–mathematicalβ€”Antitone
UniformSpace
EReal
PartialOrder.toPreorder
instPartialOrderUniformSpace
instPartialOrderEReal
coverEntropy
β€”iSupβ‚‚_mono'
Filter.le_def
le_refl
coverEntropy_empty πŸ“–mathematicalβ€”coverEntropy
Set
Set.instEmptyCollection
Bot.bot
EReal
instBotEReal
β€”iSup_congr_Prop
coverEntropyEntourage_empty
iSup_bot
coverEntropy_eq_iSup_basis πŸ“–mathematicalFilter.HasBasis
uniformity
coverEntropy
iSup
EReal
instSupSetEReal
coverEntropyEntourage
β€”LE.le.antisymm
iSupβ‚‚_le
Filter.HasBasis.mem_iff
LE.le.trans
coverEntropyEntourage_antitone
le_iSupβ‚‚
iSupβ‚‚_mono'
Filter.HasBasis.mem_of_mem
le_refl
coverEntropy_nonneg πŸ“–mathematicalSet.NonemptyEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
coverEntropy
β€”LE.le.trans
coverEntropyInf_nonneg
coverEntropyInf_le_coverEntropy
coverMincard_antitone πŸ“–mathematicalβ€”Antitone
SetRel
ENat
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coverMincard
β€”biInf_mono
IsDynCoverOf.of_entourage_subset
coverMincard_empty πŸ“–mathematicalβ€”coverMincard
Set
Set.instEmptyCollection
ENat
instZeroENat
β€”LE.le.antisymm
sInf_le
iInf_congr_Prop
iInf_pos
zero_le
coverMincard_eq_zero_iff πŸ“–mathematicalβ€”coverMincard
ENat
instZeroENat
Set
Set.instEmptyCollection
β€”Finset.coe_empty
coverMincard_finite_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coverMincard
Top.top
instTopENat
IsDynCoverOf
SetLike.coe
Finset
Finset.instSetLike
ENat.instNatCast
Finset.card
β€”WithTop.ne_top_iff_exists
LT.lt.ne
ENat.coe_ne_top
ENat.some_eq_coe
coverMincard.eq_1
iInfβ‚‚_eq_top
nonempty_subtype
ciInf_mem
Set.mem_range
iInf_subtype'
WithTop.coe_lt_top
coverMincard_finite_of_isCompact_invariant πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
Set.MapsTo
SetRel
Filter
Filter.instMembership
uniformity
ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coverMincard
Top.top
instTopENat
β€”exists_isDynCoverOf_of_isCompact_invariant
LE.le.trans_lt
IsDynCoverOf.coverMincard_le_card
WithTop.coe_lt_top
coverMincard_finite_of_isCompact_uniformContinuous πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
UniformContinuous
SetRel
Filter
Filter.instMembership
uniformity
ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coverMincard
Top.top
instTopENat
β€”exists_isDynCoverOf_of_isCompact_uniformContinuous
LE.le.trans_lt
IsDynCoverOf.coverMincard_le_card
WithTop.coe_lt_top
coverMincard_le_pow πŸ“–mathematicalSet.MapsToENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coverMincard
SetRel.comp
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
instCommSemiringENat
β€”LE.le.trans
coverMincard_monotone_time
LT.lt.le
coverMincard_mul_le_pow
coverMincard_monotone_time πŸ“–mathematicalβ€”Monotone
ENat
Nat.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coverMincard
β€”biInf_mono
IsDynCoverOf.of_le
coverMincard_mul_le_pow πŸ“–mathematicalSet.MapsToENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coverMincard
SetRel.comp
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
instCommSemiringENat
β€”Set.eq_empty_or_nonempty
coverMincard_empty
zero_le
eq_or_ne
MulZeroClass.mul_zero
coverMincard_zero
pow_zero
le_refl
eq_top_or_lt_top
ENat.top_pow
coverMincard_finite_iff
IsDynCoverOf.iterate_le_pow
LE.le.trans
IsDynCoverOf.coverMincard_le_card
WithTop.coe_le_coe
coverMincard_univ πŸ“–mathematicalSet.NonemptycoverMincard
Set.univ
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”le_antisymm
isDynCoverOf_univ
Set.singleton_nonempty
LE.le.trans_eq
IsDynCoverOf.coverMincard_le_card
Finset.coe_singleton
Finset.card_singleton
Nat.cast_one
one_le_coverMincard_iff
coverMincard_zero πŸ“–mathematicalSet.NonemptycoverMincard
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”le_antisymm
isDynCoverOf_zero
Set.singleton_nonempty
LE.le.trans_eq
IsDynCoverOf.coverMincard_le_card
Finset.coe_singleton
Finset.card_singleton
Nat.cast_one
one_le_coverMincard_iff
exists_isDynCoverOf_of_isCompact_invariant πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
Set.MapsTo
SetRel
Filter
Filter.instMembership
uniformity
IsDynCoverOf
SetLike.coe
Finset
Finset.instSetLike
β€”comp_symm_mem_uniformity_sets
IsCompact.elim_nhds_subcover
UniformSpace.ball_mem_nhds
SetRel.IsCover.of_subset_iUnion_ball
isSymm_dynEntourage
Set.iUnion_congr_Prop
dynEntourage_one
IsDynCoverOf.iterate_le_pow
IsDynCoverOf.of_entourage_subset
one_mul
exists_isDynCoverOf_of_isCompact_uniformContinuous πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
UniformContinuous
SetRel
Filter
Filter.instMembership
uniformity
IsDynCoverOf
SetLike.coe
Finset
Finset.instSetLike
β€”symm_of_uniformity
dynEntourage_mem_uniformity
IsCompact.elim_nhds_subcover
UniformSpace.ball_mem_nhds
IsDynCoverOf.of_entourage_subset
SetRel.IsCover.of_subset_iUnion_ball
isSymm_dynEntourage
isDynCoverOf_empty πŸ“–mathematicalβ€”IsDynCoverOf
Set
Set.instEmptyCollection
β€”SetRel.IsCover.empty
isDynCoverOf_empty_right πŸ“–mathematicalβ€”IsDynCoverOf
Set
Set.instEmptyCollection
β€”β€”
isDynCoverOf_univ πŸ“–mathematicalSet.NonemptyIsDynCoverOf
Set.univ
β€”dynEntourage_univ
isDynCoverOf_zero πŸ“–mathematicalSet.NonemptyIsDynCoverOfβ€”dynEntourage_zero
nonempty_inter_of_coverMincard πŸ“–mathematicalIsDynCoverOf
SetLike.coe
Finset
Finset.instSetLike
ENat
ENat.instNatCast
Finset.card
coverMincard
Finset.instMembership
Set.Nonempty
Set
Set.instInter
UniformSpace.ball
dynEntourage
β€”Mathlib.Tactic.Push.not_forall_eq
Finset.coe_erase
Finset.mem_coe
Set.notMem_empty
Set.mem_inter
SetRel.symm
isSymm_dynEntourage
LE.le.not_gt
IsDynCoverOf.coverMincard_le_card
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Finset.card_erase_lt_of_mem
one_le_coverMincard_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
coverMincard
Set.Nonempty
β€”ENat.one_le_iff_ne_zero
Set.nonempty_iff_ne_empty
not_iff_not
coverMincard_eq_zero_iff

Dynamics.IsDynCoverOf

Theorems

NameKindAssumesProvesValidatesDepends On
coverEntropyEntourage_le_log_card_div πŸ“–mathematicalSet.MapsTo
Dynamics.IsDynCoverOf
SetLike.coe
Finset
Finset.instSetLike
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
Dynamics.coverEntropyEntourage
SetRel.comp
DivInvMonoid.toDiv
EReal.instDivInvMonoid
ENNReal.log
ENNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Finset.card
instAddCommMonoidWithOneEReal
β€”LE.le.trans
Dynamics.coverEntropyEntourage_le_log_coverMincard_div
EReal.monotone_div_right_of_nonneg
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoidEReal
instZeroLEOneClassEReal
ENNReal.log_monotone
coverMincard_le_card
coverMincard_le_card πŸ“–mathematicalDynamics.IsDynCoverOf
SetLike.coe
Finset
Finset.instSetLike
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Dynamics.coverMincard
ENat.instNatCast
Finset.card
β€”iInfβ‚‚_le
iterate_le_pow πŸ“–mathematicalSet.MapsTo
Dynamics.IsDynCoverOf
SetLike.coe
Finset
Finset.instSetLike
SetRel.comp
Finset.card
Monoid.toNatPow
Nat.instMonoid
β€”Set.eq_empty_or_nonempty
Finset.coe_empty
Nat.instCanonicallyOrderedAdd
nonempty
MulZeroClass.zero_mul
Finset.coe_singleton
Finset.card_singleton
Dynamics.isDynCoverOf_zero
Set.singleton_nonempty
one_le_pow_of_one_le'
Nat.instMulLeftMono
Finset.Nonempty.card_pos
Set.empty_subset
Set.iInter_congr_Prop
Prod.map_iterate
UniformSpace.mem_comp_of_mem_ball
Function.iterate_add_apply
Finset.Nonempty.coe_sort
Finset.coe_nonempty
Set.MapsTo.iterate
SetRel.symm
Dynamics.isSymm_dynEntourage
Set.toFinset_range
Finset.coe_image
Finset.coe_univ
Set.image_univ
SetRel.isSymm_comp_self
Set.toFinset_card
LE.le.trans
Fintype.card_range_le
Fintype.card_fun
Fintype.card_coe
Fintype.card_fin
nonempty πŸ“–β€”Set.Nonempty
Dynamics.IsDynCoverOf
β€”β€”SetRel.IsCover.nonempty
nonempty_inter πŸ“–mathematicalDynamics.IsDynCoverOf
SetLike.coe
Finset
Finset.instSetLike
Finset.card
Set.Nonempty
Set
Set.instInter
UniformSpace.ball
Dynamics.dynEntourage
β€”Finset.coe_filter
SetRel.symm
Dynamics.isSymm_dynEntourage
Finset.card_mono
Finset.filter_subset
of_entourage_subset πŸ“–β€”SetRel
Set.instHasSubset
Dynamics.IsDynCoverOf
β€”β€”SetRel.IsCover.mono_entourage
Dynamics.dynEntourage_mono
le_refl
of_le πŸ“–β€”Dynamics.IsDynCoverOfβ€”β€”SetRel.IsCover.mono_entourage
Dynamics.dynEntourage_mono
subset_refl
Set.instReflSubset

---

← Back to Index