Documentation Verification Report

DynamicalEntourage

πŸ“ Source: Mathlib/Dynamics/TopologicalEntropy/DynamicalEntourage.lean

Statistics

MetricCount
DefinitionsdynEntourage
1
Theoremsball_dynEntourage_mem_nhds, dynEntourage_antitone, dynEntourage_comp_subset, dynEntourage_eq_inter_Ico, dynEntourage_mem_uniformity, dynEntourage_mono, dynEntourage_monotone, dynEntourage_one, dynEntourage_univ, dynEntourage_zero, idRel_subset_dynEntourage, isRefl_dynEntourage, isSymm_dynEntourage, mem_ball_dynEntourage, mem_ball_dynEntourage_comp, mem_dynEntourage, preimage_dynEntourage, dynEntourage, dynEntourage
19
Total20

Dynamics

Definitions

NameCategoryTheorems
dynEntourage πŸ“–CompOp
20 mathmath: isSymm_dynEntourage, ball_dynEntourage_mem_nhds, nonempty_inter_of_coverMincard, idRel_subset_dynEntourage, IsDynCoverOf.nonempty_inter, isOpen.dynEntourage, mem_dynEntourage, dynEntourage_comp_subset, dynEntourage_mem_uniformity, dynEntourage_one, dynEntourage_mono, isRefl_dynEntourage, dynEntourage_zero, dynEntourage_univ, dynEntourage_antitone, mem_ball_dynEntourage, Function.Semiconj.preimage_dynEntourage, IsSymmetricRel.dynEntourage, dynEntourage_eq_inter_Ico, dynEntourage_monotone

Theorems

NameKindAssumesProvesValidatesDepends On
ball_dynEntourage_mem_nhds πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
SetRel
Filter
Filter.instMembership
uniformity
Set
nhds
UniformSpace.ball
dynEntourage
β€”dynEntourage_eq_inter_Ico
UniformSpace.ball_iInter
Filter.iInter_mem
Finite.of_fintype
Prod.map_iterate
ball_preimage
ContinuousAt.preimage_mem_nhds
Continuous.continuousAt
Continuous.iterate
UniformSpace.ball_mem_nhds
dynEntourage_antitone πŸ“–mathematicalβ€”Antitone
SetRel
Nat.instPreorder
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
dynEntourage
β€”Set.iInterβ‚‚_mono'
lt_of_lt_of_le
subset_refl
Set.instReflSubset
dynEntourage_comp_subset πŸ“–mathematicalβ€”SetRel
Set.instHasSubset
SetRel.comp
dynEntourage
β€”Set.iInter_congr_Prop
Prod.map_iterate
UniformSpace.mem_ball_comp
dynEntourage_eq_inter_Ico πŸ“–mathematicalβ€”dynEntourage
Set.iInter
Set.Elem
Set.Ico
Nat.instPreorder
Set.preimage
Nat.iterate
Set
Set.instMembership
β€”Set.iInter_congr_Prop
Prod.map_iterate
Set.iInter_coe_set
dynEntourage_mem_uniformity πŸ“–mathematicalUniformContinuous
SetRel
Filter
Filter.instMembership
uniformity
dynEntourageβ€”dynEntourage_eq_inter_Ico
Prod.map_iterate
Set.iInter_of_empty
Set.Ico_eq_empty
Set.iInter_coe_set
Set.iInter_congr_Prop
Set.biInter_lt_succ
Filter.inter_mem
uniformContinuous_def
UniformContinuous.iterate
dynEntourage_mono πŸ“–mathematicalSetRel
Set.instHasSubset
dynEntourageβ€”LE.le.trans
dynEntourage_monotone
dynEntourage_antitone
dynEntourage_monotone πŸ“–mathematicalβ€”Monotone
SetRel
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
dynEntourage
β€”Set.iInterβ‚‚_mono
Set.preimage_mono
dynEntourage_one πŸ“–mathematicalβ€”dynEntourageβ€”Set.iInter_congr_Prop
Prod.map_iterate
Set.iInter_iInter_eq_left
dynEntourage_univ πŸ“–mathematicalβ€”dynEntourage
Set.univ
β€”Set.iInter_congr_Prop
Prod.map_iterate
Set.iInter_univ
dynEntourage_zero πŸ“–mathematicalβ€”dynEntourage
Set.univ
β€”Set.iInter_congr_Prop
Prod.map_iterate
Set.iInter_of_empty
instIsEmptyFalse
Set.iInter_univ
idRel_subset_dynEntourage πŸ“–mathematicalSet
Set.instHasSubset
idRel
dynEntourageβ€”Set.iInter_congr_Prop
Prod.map_iterate
isRefl_dynEntourage πŸ“–mathematicalβ€”SetRel.IsRefl
dynEntourage
β€”Set.iInter_congr_Prop
Prod.map_iterate
SetRel.isRefl_iInter
SetRel.isRefl_preimage
isSymm_dynEntourage πŸ“–mathematicalβ€”SetRel.IsSymm
dynEntourage
β€”Set.iInter_congr_Prop
Prod.map_iterate
SetRel.isSymm_iInter
SetRel.isSymm_preimage
mem_ball_dynEntourage πŸ“–mathematicalβ€”Set
Set.instMembership
UniformSpace.ball
dynEntourage
Nat.iterate
β€”β€”
mem_ball_dynEntourage_comp πŸ“–mathematicalSet.Nonempty
Set
Set.instInter
UniformSpace.ball
dynEntourage
Set.instMembership
SetRel.comp
β€”dynEntourage_comp_subset
UniformSpace.mem_ball_comp
UniformSpace.mem_ball_symmetry
isSymm_dynEntourage
mem_dynEntourage πŸ“–mathematicalβ€”SetRel
Set.instMembership
dynEntourage
Nat.iterate
β€”Set.iInter_congr_Prop
Prod.map_iterate

Function.Semiconj

Theorems

NameKindAssumesProvesValidatesDepends On
preimage_dynEntourage πŸ“–mathematicalFunction.SemiconjSet.preimage
Dynamics.dynEntourage
β€”Dynamics.dynEntourage.eq_1
Set.preimage_iInterβ‚‚
Set.iInterβ‚‚_congr
Set.preimage_comp
Prod.map_iterate
comp_eq
iterate_right

IsSymmetricRel

Theorems

NameKindAssumesProvesValidatesDepends On
dynEntourage πŸ“–mathematicalIsSymmetricRelDynamics.dynEntourageβ€”Set.ext
Set.iInter_congr_Prop
Prod.map_iterate
mk_mem_comm
Prod.map_apply'

isOpen

Theorems

NameKindAssumesProvesValidatesDepends On
dynEntourage πŸ“–mathematicalContinuous
IsOpen
instTopologicalSpaceProd
Dynamics.dynEntourageβ€”Dynamics.dynEntourage_eq_inter_Ico
isOpen_iInter_of_finite
Finite.of_fintype
IsOpen.preimage
Continuous.iterate
Continuous.prodMap

---

← Back to Index