Documentation Verification Report

NetEntropy

πŸ“ Source: Mathlib/Dynamics/TopologicalEntropy/NetEntropy.lean

Statistics

MetricCount
DefinitionsIsDynNetIn, netEntropyEntourage, netEntropyInfEntourage, netMaxcard
4
Theoremscard_le_card_of_isDynCoverOf, card_le_netMaxcard, of_entourage_subset, of_le, coverEntropyEntourage_le_netEntropyEntourage, coverEntropyInfEntourage_le_netEntropyInfEntourage, coverEntropyInf_eq_iSup_basis_netEntropyInfEntourage, coverEntropyInf_eq_iSup_netEntropyInfEntourage, coverEntropy_eq_iSup_basis_netEntropyEntourage, coverEntropy_eq_iSup_netEntropyEntourage, coverMincard_le_netMaxcard, isDynNetIn_empty, isDynNetIn_singleton, netEntropyEntourage_antitone, netEntropyEntourage_empty, netEntropyEntourage_le_coverEntropy, netEntropyEntourage_le_coverEntropyEntourage, netEntropyEntourage_nonneg, netEntropyEntourage_univ, netEntropyInfEntourage_antitone, netEntropyInfEntourage_empty, netEntropyInfEntourage_le_coverEntropyInf, netEntropyInfEntourage_le_coverEntropyInfEntourage, netEntropyInfEntourage_le_netEntropyEntourage, netEntropyInfEntourage_nonneg, netEntropyInfEntourage_univ, netMaxcard_antitone, netMaxcard_empty, netMaxcard_eq_zero_iff, netMaxcard_finite_iff, netMaxcard_infinite_iff, netMaxcard_le_coverMincard, netMaxcard_monotone_time, netMaxcard_univ, netMaxcard_zero, one_le_netMaxcard_iff
36
Total40

Dynamics

Definitions

NameCategoryTheorems
IsDynNetIn πŸ“–MathDef
4 mathmath: netMaxcard_infinite_iff, isDynNetIn_singleton, netMaxcard_finite_iff, isDynNetIn_empty
netEntropyEntourage πŸ“–CompOp
11 mathmath: netEntropyEntourage_monotone, netEntropyEntourage_le_coverEntropyEntourage, netEntropyEntourage_antitone, coverEntropyEntourage_le_netEntropyEntourage, netEntropyEntourage_empty, netEntropyInfEntourage_le_netEntropyEntourage, coverEntropy_eq_iSup_basis_netEntropyEntourage, coverEntropy_eq_iSup_netEntropyEntourage, netEntropyEntourage_nonneg, netEntropyEntourage_le_coverEntropy, netEntropyEntourage_univ
netEntropyInfEntourage πŸ“–CompOp
11 mathmath: coverEntropyInfEntourage_le_netEntropyInfEntourage, netEntropyInfEntourage_univ, coverEntropyInf_eq_iSup_netEntropyInfEntourage, netEntropyInfEntourage_nonneg, netEntropyInfEntourage_le_netEntropyEntourage, netEntropyInfEntourage_monotone, coverEntropyInf_eq_iSup_basis_netEntropyInfEntourage, netEntropyInfEntourage_le_coverEntropyInfEntourage, netEntropyInfEntourage_le_coverEntropyInf, netEntropyInfEntourage_empty, netEntropyInfEntourage_antitone
netMaxcard πŸ“–CompOp
13 mathmath: netMaxcard_monotone_subset, netMaxcard_le_coverMincard, IsDynNetIn.card_le_netMaxcard, netMaxcard_infinite_iff, netMaxcard_zero, netMaxcard_empty, netMaxcard_antitone, netMaxcard_monotone_time, netMaxcard_finite_iff, coverMincard_le_netMaxcard, netMaxcard_univ, netMaxcard_eq_zero_iff, one_le_netMaxcard_iff

Theorems

NameKindAssumesProvesValidatesDepends On
coverEntropyEntourage_le_netEntropyEntourage πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyEntourage
SetRel.comp
netEntropyEntourage
β€”ExpGrowth.expGrowthSup_monotone
ENat.toENNReal_mono
coverMincard_le_netMaxcard
coverEntropyInfEntourage_le_netEntropyInfEntourage πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyInfEntourage
SetRel.comp
netEntropyInfEntourage
β€”ExpGrowth.expGrowthInf_monotone
ENat.toENNReal_mono
coverMincard_le_netMaxcard
coverEntropyInf_eq_iSup_basis_netEntropyInfEntourage πŸ“–mathematicalFilter.HasBasis
uniformity
coverEntropyInf
iSup
EReal
instSupSetEReal
netEntropyInfEntourage
β€”coverEntropyInf_eq_iSup_netEntropyInfEntourage
LE.le.antisymm'
iSupβ‚‚_mono'
Filter.HasBasis.mem_of_mem
le_refl
iSupβ‚‚_le
Filter.HasBasis.mem_iff
LE.le.trans
netEntropyInfEntourage_antitone
le_iSupβ‚‚
coverEntropyInf_eq_iSup_netEntropyInfEntourage πŸ“–mathematicalβ€”coverEntropyInf
iSup
EReal
Set
instSupSetEReal
Filter
Filter.instMembership
uniformity
netEntropyInfEntourage
β€”le_antisymm
iSupβ‚‚_le
comp_symm_mem_uniformity_sets
isRefl_of_mem_uniformity
LE.le.trans
coverEntropyInfEntourage_antitone
le_iSupβ‚‚_of_le
coverEntropyInfEntourage_le_netEntropyInfEntourage
netEntropyInfEntourage_antitone
SetRel.symmetrize_subset_self
LE.le.trans'
le_iSupβ‚‚
symmetrize_mem_uniformity
netEntropyInfEntourage_le_coverEntropyInfEntourage
coverEntropy_eq_iSup_basis_netEntropyEntourage πŸ“–mathematicalFilter.HasBasis
uniformity
coverEntropy
iSup
EReal
instSupSetEReal
netEntropyEntourage
β€”coverEntropy_eq_iSup_netEntropyEntourage
LE.le.antisymm'
iSupβ‚‚_mono'
Filter.HasBasis.mem_of_mem
le_refl
iSupβ‚‚_le
Filter.HasBasis.mem_iff
LE.le.trans
netEntropyEntourage_antitone
le_iSupβ‚‚
coverEntropy_eq_iSup_netEntropyEntourage πŸ“–mathematicalβ€”coverEntropy
iSup
EReal
Set
instSupSetEReal
Filter
Filter.instMembership
uniformity
netEntropyEntourage
β€”le_antisymm
iSupβ‚‚_le
comp_symm_mem_uniformity_sets
LE.le.trans
coverEntropyEntourage_antitone
le_iSupβ‚‚_of_le
isRefl_of_mem_uniformity
coverEntropyEntourage_le_netEntropyEntourage
netEntropyEntourage_antitone
SetRel.symmetrize_subset_self
LE.le.trans'
le_iSupβ‚‚
symmetrize_mem_uniformity
netEntropyEntourage_le_coverEntropyEntourage
coverMincard_le_netMaxcard πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coverMincard
SetRel.comp
netMaxcard
β€”eq_top_or_lt_top
le_top
netMaxcard_finite_iff
IsDynCoverOf.coverMincard_le_card
IsDynCoverOf.eq_1
UniformSpace.isCover_iff_subset_iUnion_ball
isSymm_dynEntourage
SetRel.isSymm_comp_self
Set.not_subset
Set.insert_subset
Set.pairwiseDisjoint_insert
Set.disjoint_left
Set.iUnion_congr_Prop
mem_ball_dynEntourage_comp
Set.nonempty_of_mem
LE.le.not_gt
IsDynNetIn.card_le_netMaxcard
Finset.coe_insert
Nat.cast_lt
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
LT.lt.trans_eq
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instIsOrderedAddMonoid
Finset.card_insert_of_notMem
UniformSpace.ball_mono
dynEntourage_monotone
SetRel.left_subset_comp
SetRel.rfl
isRefl_dynEntourage
isDynNetIn_empty πŸ“–mathematicalβ€”IsDynNetIn
Set
Set.instEmptyCollection
β€”Set.empty_subset
Set.pairwise_empty
isDynNetIn_singleton πŸ“–mathematicalSet
Set.instMembership
IsDynNetIn
Set.instSingletonSet
β€”Set.singleton_subset_iff
Set.pairwise_singleton
netEntropyEntourage_antitone πŸ“–mathematicalβ€”Antitone
SetRel
EReal
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrderEReal
netEntropyEntourage
β€”ExpGrowth.expGrowthSup_monotone
ENat.toENNReal_mono
netMaxcard_antitone
netEntropyEntourage_empty πŸ“–mathematicalβ€”netEntropyEntourage
Set
Set.instEmptyCollection
Bot.bot
EReal
instBotEReal
β€”netEntropyEntourage.eq_1
ExpGrowth.expGrowthSup_zero
netMaxcard_empty
ENat.toENNReal_zero
netEntropyEntourage_le_coverEntropy πŸ“–mathematicalSetRel
Filter
Filter.instMembership
uniformity
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
netEntropyEntourage
coverEntropy
β€”le_iSupβ‚‚
coverEntropy_eq_iSup_netEntropyEntourage
netEntropyEntourage_le_coverEntropyEntourage πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
netEntropyEntourage
coverEntropyEntourage
β€”ExpGrowth.expGrowthSup_monotone
ENat.toENNReal_mono
netMaxcard_le_coverMincard
netEntropyEntourage_nonneg πŸ“–mathematicalSet.NonemptyEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
netEntropyEntourage
β€”LE.le.trans
netEntropyInfEntourage_nonneg
netEntropyInfEntourage_le_netEntropyEntourage
netEntropyEntourage_univ πŸ“–mathematicalSet.NonemptynetEntropyEntourage
Set.univ
EReal
instZeroEReal
β€”ExpGrowth.expGrowthSup_const
one_ne_zero
NeZero.charZero_one
ENNReal.instCharZero
ENNReal.one_ne_top
netEntropyEntourage.eq_1
netMaxcard_univ
ENat.toENNReal_one
netEntropyInfEntourage_antitone πŸ“–mathematicalβ€”Antitone
SetRel
EReal
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrderEReal
netEntropyInfEntourage
β€”ExpGrowth.expGrowthInf_monotone
ENat.toENNReal_mono
netMaxcard_antitone
netEntropyInfEntourage_empty πŸ“–mathematicalβ€”netEntropyInfEntourage
Set
Set.instEmptyCollection
Bot.bot
EReal
instBotEReal
β€”eq_bot_mono
netEntropyInfEntourage_le_netEntropyEntourage
netEntropyEntourage_empty
netEntropyInfEntourage_le_coverEntropyInf πŸ“–mathematicalSetRel
Filter
Filter.instMembership
uniformity
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
netEntropyInfEntourage
coverEntropyInf
β€”le_iSupβ‚‚
coverEntropyInf_eq_iSup_netEntropyInfEntourage
netEntropyInfEntourage_le_coverEntropyInfEntourage πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
netEntropyInfEntourage
coverEntropyInfEntourage
β€”ExpGrowth.expGrowthInf_monotone
ENat.toENNReal_mono
netMaxcard_le_coverMincard
netEntropyInfEntourage_le_netEntropyEntourage πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
netEntropyInfEntourage
netEntropyEntourage
β€”ExpGrowth.expGrowthInf_le_expGrowthSup
netEntropyInfEntourage_nonneg πŸ“–mathematicalSet.NonemptyEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
instZeroEReal
netEntropyInfEntourage
β€”Monotone.expGrowthInf_nonneg
ENat.toENNReal_mono
netMaxcard_monotone_time
Iff.not
netMaxcard_zero
Pi.zero_apply
ENat.toENNReal_one
one_ne_zero
NeZero.charZero_one
ENNReal.instCharZero
netEntropyInfEntourage_univ πŸ“–mathematicalSet.NonemptynetEntropyInfEntourage
Set.univ
EReal
instZeroEReal
β€”ExpGrowth.expGrowthInf_const
one_ne_zero
NeZero.charZero_one
ENNReal.instCharZero
ENNReal.one_ne_top
netEntropyInfEntourage.eq_1
netMaxcard_univ
ENat.toENNReal_one
netMaxcard_antitone πŸ“–mathematicalβ€”Antitone
SetRel
ENat
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
netMaxcard
β€”biSup_mono
IsDynNetIn.of_entourage_subset
netMaxcard_empty πŸ“–mathematicalβ€”netMaxcard
Set
Set.instEmptyCollection
ENat
instZeroENat
β€”netMaxcard.eq_1
bot_eq_zero
iSupβ‚‚_eq_bot
Set.subset_empty_iff
Finset.card_empty
CharP.cast_eq_zero
CharP.ofCharZero
bot_eq_zero'
netMaxcard_eq_zero_iff πŸ“–mathematicalβ€”netMaxcard
ENat
instZeroENat
Set
Set.instEmptyCollection
β€”Set.eq_empty_iff_forall_notMem
isDynNetIn_singleton
IsDynNetIn.card_le_netMaxcard
Finset.coe_singleton
LE.le.not_gt
Nat.cast_one
Finset.card_singleton
zero_lt_one
IsOrderedRing.toZeroLEOneClass
NeZero.charZero_one
netMaxcard_empty
netMaxcard_finite_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
netMaxcard
Top.top
instTopENat
IsDynNetIn
SetLike.coe
Finset
Finset.instSetLike
ENat.instNatCast
Finset.card
β€”WithTop.ne_top_iff_exists
LT.lt.ne
netMaxcard.eq_1
Set.image_comp
sSup_image
iSup_congr_Prop
mem_upperBounds
WithTop.coe_le_coe
le_sSup
Set.image_congr
WithTop.charZero
Nat.instCharZero
Filter.frequently_principal
Finset.coe_empty
isDynNetIn_empty
Nat.sSup_mem
Set.mem_image
ENat.some_eq_coe
WithTop.coe_sSup'
WithTop.coe_lt_top
netMaxcard_infinite_iff πŸ“–mathematicalβ€”netMaxcard
Top.top
ENat
instTopENat
IsDynNetIn
SetLike.coe
Finset
Finset.instSetLike
Finset.card
β€”IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
iSup_eq_top
iSup_subtype'
netMaxcard.eq_1
ENat.coe_lt_top
LT.lt.le
WithTop.eq_top_iff_forall_gt
LE.le.trans_lt'
IsDynNetIn.card_le_netMaxcard
ENat.some_eq_coe
Nat.cast_lt
LT.lt.trans_le
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instIsOrderedAddMonoid
netMaxcard_le_coverMincard πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
netMaxcard
coverMincard
β€”eq_top_or_lt_top
le_top
coverMincard_finite_iff
iSupβ‚‚_le
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
IsDynNetIn.card_le_card_of_isDynCoverOf
netMaxcard_monotone_time πŸ“–mathematicalβ€”Monotone
ENat
Nat.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
netMaxcard
β€”biSup_mono
IsDynNetIn.of_le
netMaxcard_univ πŸ“–mathematicalSet.NonemptynetMaxcard
Set.univ
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”LE.le.antisymm
iSupβ‚‚_le
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Finset.card_le_one
Set.PairwiseDisjoint.elim_set
dynEntourage_univ
Set.mem_univ
one_le_netMaxcard_iff
netMaxcard_zero πŸ“–mathematicalSet.NonemptynetMaxcard
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”LE.le.antisymm
iSupβ‚‚_le
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Finset.card_le_one
Set.PairwiseDisjoint.elim_set
dynEntourage_zero
Set.mem_univ
one_le_netMaxcard_iff
one_le_netMaxcard_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
netMaxcard
Set.Nonempty
β€”ENat.one_le_iff_ne_zero
Set.nonempty_iff_ne_empty
not_iff_not
netMaxcard_eq_zero_iff

Dynamics.IsDynNetIn

Theorems

NameKindAssumesProvesValidatesDepends On
card_le_card_of_isDynCoverOf πŸ“–mathematicalDynamics.IsDynNetIn
SetLike.coe
Finset
Finset.instSetLike
Dynamics.IsDynCoverOf
Finset.cardβ€”Finset.card_le_card_of_injOn
Set.PairwiseDisjoint.elim_set
Function.sometimes_spec
card_le_netMaxcard πŸ“–mathematicalDynamics.IsDynNetIn
SetLike.coe
Finset
Finset.instSetLike
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
Finset.card
Dynamics.netMaxcard
β€”le_iSupβ‚‚
of_entourage_subset πŸ“–β€”SetRel
Set.instHasSubset
Dynamics.IsDynNetIn
β€”β€”Set.PairwiseDisjoint.mono
UniformSpace.ball_mono
Dynamics.dynEntourage_monotone
of_le πŸ“–β€”Dynamics.IsDynNetInβ€”β€”Set.PairwiseDisjoint.mono
UniformSpace.ball_mono
Dynamics.dynEntourage_antitone

---

← Back to Index