π Source: Mathlib/Dynamics/TopologicalEntropy/NetEntropy.lean
IsDynNetIn
netEntropyEntourage
netEntropyInfEntourage
netMaxcard
card_le_card_of_isDynCoverOf
card_le_netMaxcard
of_entourage_subset
of_le
coverEntropyEntourage_le_netEntropyEntourage
coverEntropyInfEntourage_le_netEntropyInfEntourage
coverEntropyInf_eq_iSup_basis_netEntropyInfEntourage
coverEntropyInf_eq_iSup_netEntropyInfEntourage
coverEntropy_eq_iSup_basis_netEntropyEntourage
coverEntropy_eq_iSup_netEntropyEntourage
coverMincard_le_netMaxcard
isDynNetIn_empty
isDynNetIn_singleton
netEntropyEntourage_antitone
netEntropyEntourage_empty
netEntropyEntourage_le_coverEntropy
netEntropyEntourage_le_coverEntropyEntourage
netEntropyEntourage_nonneg
netEntropyEntourage_univ
netEntropyInfEntourage_antitone
netEntropyInfEntourage_empty
netEntropyInfEntourage_le_coverEntropyInf
netEntropyInfEntourage_le_coverEntropyInfEntourage
netEntropyInfEntourage_le_netEntropyEntourage
netEntropyInfEntourage_nonneg
netEntropyInfEntourage_univ
netMaxcard_antitone
netMaxcard_empty
netMaxcard_eq_zero_iff
netMaxcard_finite_iff
netMaxcard_infinite_iff
netMaxcard_le_coverMincard
netMaxcard_monotone_time
netMaxcard_univ
netMaxcard_zero
one_le_netMaxcard_iff
netEntropyEntourage_monotone
netEntropyInfEntourage_monotone
netMaxcard_monotone_subset
IsDynNetIn.card_le_netMaxcard
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyEntourage
SetRel.comp
ExpGrowth.expGrowthSup_monotone
ENat.toENNReal_mono
coverEntropyInfEntourage
ExpGrowth.expGrowthInf_monotone
Filter.HasBasis
uniformity
coverEntropyInf
iSup
instSupSetEReal
LE.le.antisymm'
iSupβ_mono'
Filter.HasBasis.mem_of_mem
le_refl
iSupβ_le
Filter.HasBasis.mem_iff
LE.le.trans
le_iSupβ
Set
Filter
Filter.instMembership
le_antisymm
comp_symm_mem_uniformity_sets
isRefl_of_mem_uniformity
coverEntropyInfEntourage_antitone
le_iSupβ_of_le
SetRel.symmetrize_subset_self
LE.le.trans'
symmetrize_mem_uniformity
coverEntropy
coverEntropyEntourage_antitone
ENat
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coverMincard
eq_top_or_lt_top
le_top
IsDynCoverOf.coverMincard_le_card
IsDynCoverOf.eq_1
UniformSpace.isCover_iff_subset_iUnion_ball
isSymm_dynEntourage
SetRel.isSymm_comp_self
Set.not_subset
Set.insert_subset
Set.pairwiseDisjoint_insert
Set.disjoint_left
Set.iUnion_congr_Prop
mem_ball_dynEntourage_comp
Set.nonempty_of_mem
LE.le.not_gt
Finset.coe_insert
Nat.cast_lt
IsOrderedAddMonoid.toAddLeftMono
LinearOrderedAddCommMonoidWithTop.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
LT.lt.trans_eq
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Nat.instIsOrderedAddMonoid
Finset.card_insert_of_notMem
UniformSpace.ball_mono
dynEntourage_monotone
SetRel.left_subset_comp
SetRel.rfl
isRefl_dynEntourage
Set.instEmptyCollection
Set.empty_subset
Set.pairwise_empty
Set.instMembership
Set.instSingletonSet
Set.singleton_subset_iff
Set.pairwise_singleton
Antitone
SetRel
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Bot.bot
instBotEReal
netEntropyEntourage.eq_1
ExpGrowth.expGrowthSup_zero
ENat.toENNReal_zero
Set.Nonempty
instZeroEReal
Set.univ
ExpGrowth.expGrowthSup_const
one_ne_zero
NeZero.charZero_one
ENNReal.instCharZero
ENNReal.one_ne_top
ENat.toENNReal_one
eq_bot_mono
ExpGrowth.expGrowthInf_le_expGrowthSup
Monotone.expGrowthInf_nonneg
Iff.not
Pi.zero_apply
ExpGrowth.expGrowthInf_const
netEntropyInfEntourage.eq_1
biSup_mono
IsDynNetIn.of_entourage_subset
instZeroENat
netMaxcard.eq_1
bot_eq_zero
iSupβ_eq_bot
Set.subset_empty_iff
Finset.card_empty
CharP.cast_eq_zero
CharP.ofCharZero
bot_eq_zero'
Set.eq_empty_iff_forall_notMem
Finset.coe_singleton
Nat.cast_one
Finset.card_singleton
zero_lt_one
Preorder.toLT
Top.top
instTopENat
SetLike.coe
Finset
Finset.instSetLike
ENat.instNatCast
Finset.card
WithTop.ne_top_iff_exists
LT.lt.ne
Set.image_comp
sSup_image
iSup_congr_Prop
mem_upperBounds
WithTop.coe_le_coe
le_sSup
Set.image_congr
WithTop.charZero
Nat.instCharZero
Filter.frequently_principal
Finset.coe_empty
Nat.sSup_mem
Set.mem_image
ENat.some_eq_coe
WithTop.coe_sSup'
WithTop.coe_lt_top
iSup_eq_top
iSup_subtype'
ENat.coe_lt_top
LT.lt.le
WithTop.eq_top_iff_forall_gt
LE.le.trans_lt'
LT.lt.trans_le
coverMincard_finite_iff
Nat.cast_le
IsDynNetIn.card_le_card_of_isDynCoverOf
Monotone
Nat.instPreorder
IsDynNetIn.of_le
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
LE.le.antisymm
Finset.card_le_one
Set.PairwiseDisjoint.elim_set
dynEntourage_univ
Set.mem_univ
dynEntourage_zero
ENat.one_le_iff_ne_zero
Set.nonempty_iff_ne_empty
not_iff_not
Dynamics.IsDynNetIn
Dynamics.IsDynCoverOf
Finset.card_le_card_of_injOn
Function.sometimes_spec
Dynamics.netMaxcard
Set.instHasSubset
Set.PairwiseDisjoint.mono
Dynamics.dynEntourage_monotone
Dynamics.dynEntourage_antitone
---
β Back to Index