Documentation Verification Report

Semiconj

πŸ“ Source: Mathlib/Dynamics/TopologicalEntropy/Semiconj.lean

Statistics

MetricCount
DefinitionsSemiconj
1
Theoremsimage, preimage, coverEntropyEntourage_image_le, coverEntropyInfEntourage_image_le, coverEntropyInf_image_le_of_uniformContinuous, coverEntropyInf_image_le_of_uniformContinuousOn_invariant, coverEntropyInf_image_of_comap, coverEntropyInf_restrict_subset, coverEntropy_image_le_of_uniformContinuous, coverEntropy_image_le_of_uniformContinuousOn_invariant, coverEntropy_image_of_comap, coverEntropy_restrict, coverEntropy_restrict_subset, coverMincard_image_le, le_coverEntropyEntourage_image, le_coverEntropyInfEntourage_image, le_coverMincard_image
17
Total18

Dynamics

Theorems

NameKindAssumesProvesValidatesDepends On
coverEntropyEntourage_image_le πŸ“–mathematicalFunction.SemiconjEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyEntourage
Set.image
Set.preimage
β€”ExpGrowth.expGrowthSup_monotone
ENat.toENNReal_mono
coverMincard_image_le
coverEntropyInfEntourage_image_le πŸ“–mathematicalFunction.SemiconjEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyInfEntourage
Set.image
Set.preimage
β€”ExpGrowth.expGrowthInf_monotone
ENat.toENNReal_mono
coverMincard_image_le
coverEntropyInf_image_le_of_uniformContinuous πŸ“–mathematicalFunction.Semiconj
UniformContinuous
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyInf
Set.image
β€”coverEntropyInf_image_of_comap
coverEntropyInf_antitone
uniformContinuous_iff
coverEntropyInf_image_le_of_uniformContinuousOn_invariant πŸ“–mathematicalFunction.Semiconj
UniformContinuousOn
Set
Set.instHasSubset
Set.MapsTo
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyInf
Set.image
β€”coverEntropyInf_restrict_subset
Set.restrict_apply
Set.MapsTo.val_restrict_apply
Function.Semiconj.eq
LE.le.trans_eq'
coverEntropyInf_image_le_of_uniformContinuous
uniformContinuousOn_iff_restrict
Set.image_image_val_eq_restrict_image
Subtype.image_preimage_coe
Set.inter_eq_right
coverEntropyInf_image_of_comap πŸ“–mathematicalFunction.SemiconjcoverEntropyInf
Set.image
UniformSpace.comap
β€”le_antisymm
iSupβ‚‚_le
LE.le.trans
coverEntropyInfEntourage_antitone
SetRel.symmetrize_subset_self
coverEntropyInfEntourage_image_le
coverEntropyInfEntourage_le_coverEntropyInf
uniformity_comap
Filter.mem_comap
symmetrize_mem_uniformity
Set.Subset.rfl
comp_symm_mem_uniformity_sets
HasSubset.Subset.trans
Set.instIsTransSubset
Set.preimage_mono
le_coverEntropyInfEntourage_image
coverEntropyInf_restrict_subset πŸ“–mathematicalSet
Set.instHasSubset
Set.MapsTo
coverEntropyInf
Set.Elem
instUniformSpaceSubtype
Set.instMembership
Set.MapsTo.restrict
Set.preimage
β€”coverEntropyInf_image_of_comap
Set.MapsTo.val_restrict_apply
Subtype.image_preimage_coe
Set.inter_eq_right
coverEntropy_image_le_of_uniformContinuous πŸ“–mathematicalFunction.Semiconj
UniformContinuous
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropy
Set.image
β€”coverEntropy_image_of_comap
coverEntropy_antitone
uniformContinuous_iff
coverEntropy_image_le_of_uniformContinuousOn_invariant πŸ“–mathematicalFunction.Semiconj
UniformContinuousOn
Set
Set.instHasSubset
Set.MapsTo
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropy
Set.image
β€”coverEntropy_restrict_subset
Set.restrict_apply
Set.MapsTo.val_restrict_apply
Function.Semiconj.eq
LE.le.trans_eq'
coverEntropy_image_le_of_uniformContinuous
uniformContinuousOn_iff_restrict
Set.image_image_val_eq_restrict_image
Subtype.image_preimage_coe
Set.inter_eq_right
coverEntropy_image_of_comap πŸ“–mathematicalFunction.SemiconjcoverEntropy
Set.image
UniformSpace.comap
β€”le_antisymm
iSupβ‚‚_le
LE.le.trans
coverEntropyEntourage_antitone
SetRel.symmetrize_subset_self
coverEntropyEntourage_image_le
coverEntropyEntourage_le_coverEntropy
uniformity_comap
Filter.mem_comap
symmetrize_mem_uniformity
Set.Subset.rfl
comp_symm_mem_uniformity_sets
HasSubset.Subset.trans
Set.instIsTransSubset
Set.preimage_mono
le_coverEntropyEntourage_image
coverEntropy_restrict πŸ“–mathematicalSet.MapsTocoverEntropy
Set.Elem
instUniformSpaceSubtype
Set
Set.instMembership
Set.MapsTo.restrict
Set.univ
β€”coverEntropy_restrict_subset
Set.Subset.rfl
Subtype.coe_preimage_self
coverEntropy_restrict_subset πŸ“–mathematicalSet
Set.instHasSubset
Set.MapsTo
coverEntropy
Set.Elem
instUniformSpaceSubtype
Set.instMembership
Set.MapsTo.restrict
Set.preimage
β€”coverEntropy_image_of_comap
Set.MapsTo.val_restrict_apply
Subtype.image_preimage_coe
Set.inter_eq_right
coverMincard_image_le πŸ“–mathematicalFunction.SemiconjENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coverMincard
Set.image
Set.preimage
β€”eq_top_or_lt_top
le_top
coverMincard_finite_iff
IsDynCoverOf.image
LE.le.trans
IsDynCoverOf.coverMincard_le_card
Finset.coe_image
WithTop.coe_le_coe
Finset.card_image_le
le_coverEntropyEntourage_image πŸ“–mathematicalFunction.SemiconjEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyEntourage
Set.preimage
SetRel.comp
Set.image
β€”ExpGrowth.expGrowthSup_monotone
ENat.toENNReal_mono
le_coverMincard_image
le_coverEntropyInfEntourage_image πŸ“–mathematicalFunction.SemiconjEReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyInfEntourage
Set.preimage
SetRel.comp
Set.image
β€”ExpGrowth.expGrowthInf_monotone
ENat.toENNReal_mono
le_coverMincard_image
le_coverMincard_image πŸ“–mathematicalFunction.SemiconjENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coverMincard
Set.preimage
SetRel.comp
Set.image
β€”eq_top_or_lt_top
le_top
coverMincard_finite_iff
IsDynCoverOf.preimage
LE.le.trans
IsDynCoverOf.coverMincard_le_card
WithTop.coe_le_coe

Dynamics.IsDynCoverOf

Theorems

NameKindAssumesProvesValidatesDepends On
image πŸ“–mathematicalFunction.Semiconj
Dynamics.IsDynCoverOf
Set.preimage
Set.imageβ€”Set.mem_image_of_mem
Function.Semiconj.preimage_dynEntourage
preimage πŸ“–mathematicalFunction.Semiconj
Dynamics.IsDynCoverOf
Set.image
SetLike.coe
Finset
Finset.instSetLike
Set.preimage
SetRel.comp
Finset.card
β€”isEmpty_or_nonempty
Dynamics.isDynCoverOf_empty
zero_le
Nat.instCanonicallyOrderedAdd
Finset.card_empty
Set.eq_empty_of_isEmpty
instIsEmptySubtype
nonempty_inter
Finset.coe_image
Set.image_congr
Function.Semiconj.preimage_dynEntourage
Set.mem_image_of_mem
Dynamics.dynEntourage_comp_subset
LE.le.trans
Finset.card_image_le
Function.sometimes_spec
Set.nonempty_def

Function

Definitions

NameCategoryTheorems
Semiconj πŸ“–MathDef
20 mathmath: csSup_div_semiconj, AddSemiconjBy.function_semiconj_add_right_swap, Flow.IsSemiconjugacy.semiconj, Equiv.semiconj_conj, sSup_div_semiconj, AddConstMapClass.semiconj, Semiconj.swap_map, Semiconj.id_right, CircleDeg1Lift.semiconj_of_isUnit_of_translationNumber_eq, SemiconjBy.function_semiconj_mul_right_swap, CircleDeg1Lift.semiconj_of_group_action_of_forall_translationNumber_eq, Semiconj.id_left, SemiconjBy.function_semiconj_mul_left, semiconj_of_isLUB, AddSemiconjBy.function_semiconj_add_left, CircleDeg1Lift.units_semiconj_of_translationNumber_eq, CircleDeg1Lift.semiconj_of_bijective_of_translationNumber_eq, Commute.semiconj, semiconj_iff_comp_eq, CircleDeg1Lift.semiconjBy_iff_semiconj

---

← Back to Index