Documentation Verification Report

Subset

πŸ“ Source: Mathlib/Dynamics/TopologicalEntropy/Subset.lean

Statistics

MetricCount
DefinitionscoverEntropy_supBotHom, Subset, Subset, Subset, Subset
5
Theoremsclosure, monotone_subset, union, monotone_subset, coverEntropyEntourage_closure, coverEntropyEntourage_monotone, coverEntropyEntourage_union, coverEntropyInfEntourage_closure, coverEntropyInfEntourage_monotone, coverEntropyInf_biUnion_le, coverEntropyInf_closure, coverEntropyInf_iUnion_le, coverEntropyInf_monotone, coverEntropy_biUnion_finset, coverEntropy_biUnion_le, coverEntropy_closure, coverEntropy_iUnion_le, coverEntropy_iUnion_of_finite, coverEntropy_monotone, coverEntropy_union, coverMincard_closure_le, coverMincard_monotone_subset, coverMincard_union_le, netEntropyEntourage_monotone, netEntropyInfEntourage_monotone, netMaxcard_monotone_subset
26
Total31

Dynamics

Definitions

NameCategoryTheorems
coverEntropy_supBotHom πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coverEntropyEntourage_closure πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
SetRel
Filter
Filter.instMembership
uniformity
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyEntourage
closure
SetRel.comp
β€”ExpGrowth.expGrowthSup_monotone
ENat.toENNReal_mono
coverMincard_closure_le
coverEntropyEntourage_monotone πŸ“–mathematicalβ€”Monotone
Set
EReal
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrderEReal
coverEntropyEntourage
β€”ExpGrowth.expGrowthSup_monotone
ENat.toENNReal_mono
coverMincard_monotone_subset
coverEntropyEntourage_union πŸ“–mathematicalβ€”coverEntropyEntourage
Set
Set.instUnion
EReal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderEReal
β€”le_antisymm
ExpGrowth.expGrowthSup_monotone
Pi.add_apply
ENat.toENNReal_add
ENat.toENNReal_mono
coverMincard_union_le
ExpGrowth.expGrowthSup_add
max_le
coverEntropyEntourage_monotone
Set.subset_union_left
Set.subset_union_right
coverEntropyInfEntourage_closure πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
SetRel
Filter
Filter.instMembership
uniformity
EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
coverEntropyInfEntourage
closure
SetRel.comp
β€”ExpGrowth.expGrowthInf_monotone
ENat.toENNReal_mono
coverMincard_closure_le
coverEntropyInfEntourage_monotone πŸ“–mathematicalβ€”Monotone
Set
EReal
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrderEReal
coverEntropyInfEntourage
β€”ExpGrowth.expGrowthInf_monotone
ENat.toENNReal_mono
coverMincard_monotone_subset
coverEntropyInf_biUnion_le πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
iSup
instSupSetEReal
Set
Set.instMembership
coverEntropyInf
Set.iUnion
β€”iSupβ‚‚_le
coverEntropyInf_monotone
Set.subset_biUnion_of_mem
coverEntropyInf_closure πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
coverEntropyInf
closure
β€”LE.le.antisymm
iSupβ‚‚_le
comp_mem_uniformity_sets
le_iSupβ‚‚_of_le
LE.le.trans
coverEntropyInfEntourage_antitone
coverEntropyInfEntourage_closure
coverEntropyInf_monotone
subset_closure
coverEntropyInf_iUnion_le πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
iSup
instSupSetEReal
coverEntropyInf
Set.iUnion
β€”iSup_le
coverEntropyInf_monotone
Set.subset_iUnion
coverEntropyInf_monotone πŸ“–mathematicalβ€”Monotone
Set
EReal
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrderEReal
coverEntropyInf
β€”iSupβ‚‚_mono
coverEntropyInfEntourage_monotone
coverEntropy_biUnion_finset πŸ“–mathematicalβ€”coverEntropy
Set.iUnion
Finset
Finset.instMembership
iSup
EReal
instSupSetEReal
β€”map_finset_sup
SupBotHom.instSupBotHomClass
coverEntropy_union
coverEntropy_empty
coverEntropy_supBotHom.eq_1
Finset.sup_eq_iSup
Finset.sup_set_eq_biUnion
coverEntropy_biUnion_le πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
iSup
instSupSetEReal
Set
Set.instMembership
coverEntropy
Set.iUnion
β€”iSupβ‚‚_le
coverEntropy_monotone
Set.subset_biUnion_of_mem
coverEntropy_closure πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
coverEntropy
closure
β€”LE.le.antisymm
iSupβ‚‚_le
comp_mem_uniformity_sets
le_iSupβ‚‚_of_le
LE.le.trans
coverEntropyEntourage_antitone
coverEntropyEntourage_closure
coverEntropy_monotone
subset_closure
coverEntropy_iUnion_le πŸ“–mathematicalβ€”EReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderEReal
iSup
instSupSetEReal
coverEntropy
Set.iUnion
β€”iSup_le
coverEntropy_monotone
Set.subset_iUnion
coverEntropy_iUnion_of_finite πŸ“–mathematicalβ€”coverEntropy
Set.iUnion
iSup
EReal
instSupSetEReal
β€”Set.map_finite_iSup
SupBotHom.instSupBotHomClass
coverEntropy_monotone πŸ“–mathematicalβ€”Monotone
Set
EReal
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrderEReal
coverEntropy
β€”iSupβ‚‚_mono
coverEntropyEntourage_monotone
coverEntropy_union πŸ“–mathematicalβ€”coverEntropy
Set
Set.instUnion
EReal
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderEReal
β€”biSup_congr
coverEntropyEntourage_union
coverMincard_closure_le πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
SetRel
Filter
Filter.instMembership
uniformity
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coverMincard
closure
SetRel.comp
β€”eq_top_or_lt_top
le_top
coverMincard_finite_iff
IsDynCoverOf.coverMincard_le_card
IsDynCoverOf.closure
coverMincard_monotone_subset πŸ“–mathematicalβ€”Monotone
Set
ENat
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coverMincard
β€”biInf_mono
IsDynCoverOf.monotone_subset
coverMincard_union_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
coverMincard
Set
Set.instUnion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”eq_top_or_lt_top
top_add
le_top
add_top
coverMincard_finite_iff
ENat.coe_add
LE.le.trans
IsDynCoverOf.coverMincard_le_card
Finset.coe_union
IsDynCoverOf.union
WithTop.coe_mono
Finset.card_union_le
netEntropyEntourage_monotone πŸ“–mathematicalβ€”Monotone
Set
EReal
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrderEReal
netEntropyEntourage
β€”ExpGrowth.expGrowthSup_monotone
ENat.toENNReal_mono
netMaxcard_monotone_subset
netEntropyInfEntourage_monotone πŸ“–mathematicalβ€”Monotone
Set
EReal
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrderEReal
netEntropyInfEntourage
β€”ExpGrowth.expGrowthInf_monotone
ENat.toENNReal_mono
netMaxcard_monotone_subset
netMaxcard_monotone_subset πŸ“–mathematicalβ€”Monotone
Set
ENat
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
netMaxcard
β€”biSup_mono
IsDynNetIn.monotone_subset

Dynamics.IsDynCoverOf

Theorems

NameKindAssumesProvesValidatesDepends On
closure πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
SetRel
Filter
Filter.instMembership
uniformity
Dynamics.IsDynCoverOf
closure
SetRel.comp
β€”Filter.HasBasis.mem_iff'
UniformSpace.hasBasis_symmetric
of_entourage_subset
SetRel.comp_subset_comp_left
mem_closure_iff_nhds
Dynamics.ball_dynEntourage_mem_nhds
Dynamics.dynEntourage_comp_subset
monotone_subset πŸ“–β€”Set
Set.instHasSubset
Dynamics.IsDynCoverOf
β€”β€”HasSubset.Subset.trans
Set.instIsTransSubset
union πŸ“–mathematicalDynamics.IsDynCoverOfSet
Set.instUnion
β€”SetRel.IsCover.union

Dynamics.IsDynNetIn

Theorems

NameKindAssumesProvesValidatesDepends On
monotone_subset πŸ“–β€”Set
Set.instHasSubset
Dynamics.IsDynNetIn
β€”β€”HasSubset.Subset.trans
Set.instIsTransSubset

Lists'

Definitions

NameCategoryTheorems
Subset πŸ“–CompDataβ€”

Multiset

Definitions

NameCategoryTheorems
Subset πŸ“–MathDefβ€”

PSet

Definitions

NameCategoryTheorems
Subset πŸ“–MathDefβ€”

ZFSet

Definitions

NameCategoryTheorems
Subset πŸ“–MathDefβ€”

---

← Back to Index