Documentation Verification Report

AbelRuffini

πŸ“ Source: Mathlib/FieldTheory/AbelRuffini.lean

Statistics

MetricCount
DefinitionsIsSolvableByRad, solvableByRad, P
3
Theoremsgal_C_isSolvable, gal_X_isSolvable, gal_X_pow_isSolvable, gal_X_pow_sub_C_isSolvable, gal_X_pow_sub_C_isSolvable_aux, gal_X_pow_sub_one_isSolvable, gal_X_sub_C_isSolvable, gal_isSolvable_of_splits, gal_isSolvable_tower, gal_mul_isSolvable, gal_one_isSolvable, gal_prod_isSolvable, gal_zero_isSolvable, induction, induction1, induction2, induction3, isIntegral, isSolvable, isSolvable', splits_X_pow_sub_one_of_X_pow_sub_C
21
Total24

(root)

Definitions

NameCategoryTheorems
IsSolvableByRad πŸ“–CompDataβ€”
solvableByRad πŸ“–CompOp
2 mathmath: solvableByRad.isSolvable, solvableByRad.isIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
gal_C_isSolvable πŸ“–mathematicalβ€”IsSolvable
Polynomial.Gal
DFunLike.coe
RingHom
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
Polynomial.instGroupGal
β€”isSolvable_of_subsingleton
Unique.instSubsingleton
gal_X_isSolvable πŸ“–mathematicalβ€”IsSolvable
Polynomial.Gal
Polynomial.X
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.instGroupGal
β€”isSolvable_of_subsingleton
Unique.instSubsingleton
gal_X_pow_isSolvable πŸ“–mathematicalβ€”IsSolvable
Polynomial.Gal
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Polynomial.instGroupGal
β€”isSolvable_of_subsingleton
Unique.instSubsingleton
gal_X_pow_sub_C_isSolvable πŸ“–mathematicalβ€”IsSolvable
Polynomial.Gal
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Polynomial.instGroupGal
β€”Polynomial.C_0
sub_zero
gal_X_pow_isSolvable
gal_isSolvable_tower
splits_X_pow_sub_one_of_X_pow_sub_C
Polynomial.SplittingField.splits
gal_X_pow_sub_one_isSolvable
Polynomial.map_sub
Polynomial.map_pow
Polynomial.map_X
Polynomial.map_C
gal_X_pow_sub_C_isSolvable_aux
Polynomial.map_id
Polynomial.map_one
gal_X_pow_sub_C_isSolvable_aux πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
RingHom.id
Semiring.toNonAssocSemiring
Polynomial
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Polynomial.instOne
IsSolvable
Polynomial.Gal
DFunLike.coe
RingHom
RingHom.instFunLike
Polynomial.C
Polynomial.instGroupGal
β€”Polynomial.C_0
sub_zero
gal_X_pow_isSolvable
injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
pow_zero
Polynomial.C_1
Polynomial.C_sub
gal_C_isSolvable
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
Polynomial.X_pow_sub_C_ne_zero
RingHom.mem_range
minpoly.mem_range_of_degree_eq_one
Polynomial.Splits.degree_eq_one_of_irreducible
Polynomial.Splits.of_dvd
instIsDomain
Polynomial.map_ne_zero
minpoly.dvd
Polynomial.map_id
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
sub_eq_zero
Polynomial.aeval_X_pow
Polynomial.aeval_one
minpoly.irreducible
Normal.isIntegral
Polynomial.SplittingField.instNormal
isSolvable_of_comm
Polynomial.Gal.ext
zero_pow
Polynomial.aeval_C
Polynomial.mem_rootSet_of_ne
Polynomial.IsSplittingField.instIsTorsionFreeSplittingField
div_pow
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.commutes
div_self
mul_div_cancelβ‚€
AlgEquiv.mul_apply
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgEquiv.instAlgEquivClass
mul_assoc
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
mul_comm
gal_X_pow_sub_one_isSolvable πŸ“–mathematicalβ€”IsSolvable
Polynomial.Gal
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Polynomial.instOne
Polynomial.instGroupGal
β€”pow_zero
sub_self
gal_zero_isSolvable
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
Polynomial.X_pow_sub_C_ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
isSolvable_of_comm
Polynomial.Gal.ext
instIsDomain
CanLift.prf
Nat.canLiftPNat
map_rootsOfUnity_eq_pow_self
NeZero.pnat
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Polynomial.mem_rootSet_of_ne
Polynomial.IsSplittingField.instIsTorsionFreeSplittingField
map_sub
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
Polynomial.aeval_X_pow
Polynomial.aeval_one
AlgEquiv.mul_apply
map_pow
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
pow_mul
pow_mul'
gal_X_sub_C_isSolvable πŸ“–mathematicalβ€”IsSolvable
Polynomial.Gal
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
Polynomial.instGroupGal
β€”isSolvable_of_subsingleton
Unique.instSubsingleton
gal_isSolvable_of_splits πŸ“–mathematicalβ€”IsSolvable
Polynomial.Gal
Polynomial.instGroupGal
β€”solvable_of_surjective
Polynomial.Gal.instIsScalarTowerSplittingField
Polynomial.SplittingField.instNormal
AlgEquiv.restrictNormalHom_surjective
gal_isSolvable_tower πŸ“–mathematicalPolynomial.Splits
Polynomial.SplittingField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.SplittingField.instField
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
Polynomial.SplittingField.instAlgebra
Algebra.id
IsSolvable
Polynomial.Gal
Polynomial.instGroupGal
β€”Polynomial.IsSplittingField.map
Polynomial.Gal.instIsScalarTowerSplittingField
Polynomial.IsSplittingField.splittingField
MulEquiv.injective
isSolvable_of_isScalarTower
Polynomial.SplittingField.instNormal
solvable_of_solvable_injective
gal_mul_isSolvable πŸ“–mathematicalβ€”IsSolvable
Polynomial.Gal
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.instMul
Polynomial.instGroupGal
β€”solvable_of_solvable_injective
Polynomial.Gal.restrictProd_injective
solvable_prod
gal_one_isSolvable πŸ“–mathematicalβ€”IsSolvable
Polynomial.Gal
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.instOne
Polynomial.instGroupGal
β€”isSolvable_of_subsingleton
Unique.instSubsingleton
gal_prod_isSolvable πŸ“–mathematicalIsSolvable
Polynomial.Gal
Polynomial.instGroupGal
Multiset.prod
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommRing.toCommMonoid
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”Multiset.induction_on'
gal_one_isSolvable
Multiset.insert_eq_cons
Multiset.prod_cons
gal_mul_isSolvable
gal_zero_isSolvable πŸ“–mathematicalβ€”IsSolvable
Polynomial.Gal
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.instZero
Polynomial.instGroupGal
β€”isSolvable_of_subsingleton
Unique.instSubsingleton
splits_X_pow_sub_one_of_X_pow_sub_C πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
Polynomial
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
Polynomial.C
Polynomial.instOneβ€”injective_iff_map_eq_zero
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
pow_zero
sub_self
Polynomial.map_zero
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
ne_of_eq_of_ne
Polynomial.degree_X_pow_sub_C
WithBot.coe_eq_coe
Polynomial.Splits.exists_eval_eq_zero
Polynomial.degree_map
zero_pow
sub_eq_zero
Polynomial.evalβ‚‚_C
Polynomial.evalβ‚‚_X_pow
Polynomial.evalβ‚‚_sub
Polynomial.eval_map
instIsDomain
Polynomial.Splits.eq_prod_roots
Polynomial.Splits.natDegree_eq_card_roots
Polynomial.natDegree_map
Polynomial.natDegree_X_pow_sub_C
Polynomial.splits_iff_exists_multiset
Polynomial.leadingCoeff_map
Polynomial.leadingCoeff_X_pow_sub_one
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
Polynomial.C_1
one_mul
Multiset.map_map
Polynomial.C_mul
RingHom.map_mul
inv_mul_cancelβ‚€
RingHom.map_one
Polynomial.map_sub
Polynomial.map_pow
Polynomial.map_X
Polynomial.map_C
Polynomial.map_one
Polynomial.sub_comp
Polynomial.pow_comp
Polynomial.X_comp
Polynomial.C_comp
mul_pow
Polynomial.C_pow
mul_sub
mul_assoc
mul_div_cancelβ‚€
Polynomial.leadingCoeff_X_pow_sub_C
Polynomial.multiset_prod_comp
Multiset.prod_map_mul
Function.const_def
Multiset.map_const
Multiset.prod_replicate

solvableByRad

Definitions

NameCategoryTheorems
P πŸ“–MathDef
3 mathmath: induction2, induction3, induction1

Theorems

NameKindAssumesProvesValidatesDepends On
induction πŸ“–β€”DFunLike.coe
RingHom
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
solvableByRad
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
RingHom.instFunLike
algebraMap
IntermediateField.algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NegMemClass.neg
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
SubringClass.toNegMemClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
Distrib.toMul
InvMemClass.inv
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
SubfieldClass.toInvMemClass
β€”β€”IsScalarTower.left
SubringClass.toNegMemClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
SubfieldClass.toInvMemClass
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
IntermediateField.coe_pow
Subtype.mem
induction1 πŸ“–mathematicalIntermediateField
SetLike.instMembership
IntermediateField.instSetLike
solvableByRad
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.adjoin
Set
Set.instSingletonSet
Pβ€”IsScalarTower.left
induction2
IntermediateField.adjoin.mono
ge_of_eq
Set.pair_eq_singleton
induction2 πŸ“–mathematicalIntermediateField
SetLike.instMembership
IntermediateField.instSetLike
solvableByRad
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.adjoin
Set
Set.instInsert
Set.instSingletonSet
Pβ€”IsScalarTower.left
Polynomial.SplittingField.splits
IntermediateField.isScalarTower
IntermediateField.nonempty_algHom_adjoin_of_splits
isIntegral
Polynomial.splits_mul_iff
instIsDomain
Polynomial.map_ne_zero
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
minpoly.ne_zero
Polynomial.map_mul
minpoly.eq_of_irreducible_of_monic
minpoly.irreducible
Polynomial.aeval_algHom_apply
AlgHom.algHomClass
map_eq_zero
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
RingHom.injective
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
IntermediateField.isScalarTower_mid'
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHom.instRingHomClass
minpoly.aeval
minpoly.monic
P.eq_1
gal_isSolvable_of_splits
Normal.splits
Polynomial.SplittingField.instNormal
gal_mul_isSolvable
induction3 πŸ“–mathematicalβ€”Pβ€”SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.left
Polynomial.comp_eq_zero_iff
IsDomain.to_noZeroDivisors
instIsDomain
minpoly.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
isIntegral
Polynomial.natDegree_C
Polynomial.natDegree_X_pow
gal_isSolvable_of_splits
Polynomial.Splits.of_dvd
Polynomial.SplittingField.splits
Polynomial.map_ne_zero
DivisionRing.isSimpleRing
Polynomial.map_dvd_map'
minpoly.dvd
Polynomial.aeval_comp
Polynomial.aeval_X_pow
minpoly.aeval
gal_isSolvable_tower
Polynomial.Gal.splits_in_splittingField_of_comp
Polynomial.splits_iff_exists_multiset
Polynomial.map_comp
Polynomial.map_pow
Polynomial.map_X
Polynomial.mul_comp
Polynomial.C_comp
gal_mul_isSolvable
gal_C_isSolvable
Polynomial.multiset_prod_comp
gal_prod_isSolvable
Multiset.mem_map
Polynomial.sub_comp
Polynomial.X_comp
gal_X_pow_sub_C_isSolvable
isIntegral πŸ“–mathematicalβ€”IsIntegral
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
solvableByRad
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
β€”induction
IsScalarTower.left
isIntegral_algebraMap
IsIntegral.add
IsIntegral.neg
IsIntegral.mul
IsIntegral.inv
SubsemiringClass.toSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsIntegral.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsAlgebraic.isIntegral
Polynomial.leadingCoeff_eq_zero
mul_one
one_pow
Polynomial.leadingCoeff_X_pow
Polynomial.leadingCoeff_comp
IsDomain.to_noZeroDivisors
instIsDomain
Polynomial.natDegree_X_pow
Polynomial.aeval_comp
Polynomial.aeval_X_pow
isSolvable πŸ“–mathematicalβ€”IsSolvable
Polynomial.Gal
minpoly
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
solvableByRad
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
Polynomial.instGroupGal
β€”induction
IsScalarTower.left
minpoly.eq_X_sub_C
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
gal_X_sub_C_isSolvable
induction2
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
IntermediateField.subset_adjoin
Set.mem_insert
Set.mem_insert_of_mem
Set.mem_singleton
induction1
SubringClass.toNegMemClass
NegMemClass.neg_mem
IntermediateField.mem_adjoin_simple_self
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
SubfieldClass.toInvMemClass
InvMemClass.inv_mem
induction3
isSolvable' πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
DFunLike.coe
AlgHom
CommSemiring.toSemiring
Semifield.toCommSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsSolvableByRad
IsSolvable
Polynomial.Gal
Polynomial.instGroupGal
β€”minpoly.eq_of_irreducible
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsScalarTower.left
minpoly.algebraMap_eq
IntermediateField.isScalarTower_mid'
RingHom.injective
DivisionRing.isSimpleRing
isSolvable
solvable_of_surjective
Polynomial.Gal.restrictDvd_surjective
mul_ne_zero_iff
Polynomial.instNoZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
Polynomial.C_eq_zero
inv_eq_zero
Irreducible.ne_zero
Polynomial.leadingCoeff_ne_zero

---

← Back to Index