Documentation Verification Report

AlgebraicClosure

📁 Source: Mathlib/FieldTheory/AlgebraicClosure.lean

Statistics

MetricCount
DefinitionsalgebraicClosure, algebraicClosure, algEquivOfAlgEquiv
3
TheoremsisAlgebraic_adjoin_iff_isAlgebraic, algebraicClosure_eq_bot_iff, algebraicClosure, algebraicClosure, adjoin_le, algebraicClosure_eq_bot, comap_eq_of_algHom, eq_restrictScalars_of_isAlgebraic, eq_top_iff, isAlgClosure, isAlgebraic, isIntegralClosure, le_restrictScalars, map_eq_of_algEquiv, map_eq_of_algebraicClosure_eq_bot, map_le_of_algHom, normalClosure_eq_self, algebraicClosure_toSubalgebra, le_algebraicClosure, le_algebraicClosure', le_algebraicClosure_iff, map_mem_algebraicClosure_iff, mem_algebraicClosure_iff, mem_algebraicClosure_iff'
24
Total27

AlgEquiv

Definitions

NameCategoryTheorems
algebraicClosure 📖CompOp

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
isAlgebraic_adjoin_iff_isAlgebraic 📖mathematicalAlgebra.IsAlgebraic
IntermediateField
SetLike.instMembership
instSetLike
adjoin
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsAlgebraic
IsScalarTower.left
le_algebraicClosure_iff
adjoin_le_iff
Iff.imp
mem_algebraicClosure_iff

IsAlgClosed

Theorems

NameKindAssumesProvesValidatesDepends On
algebraicClosure_eq_bot_iff 📖mathematicalalgebraicClosure
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IsAlgClosed
of_exists_root
exists_aeval_eq_zero
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
LT.lt.ne'
Polynomial.degree_pos_of_irreducible
mem_algebraicClosure_iff'
minpoly.ne_zero_iff
ne_zero_of_dvd_ne_zero
Polynomial.Monic.ne_zero
minpoly.dvd
IsScalarTower.left
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IntermediateField.eq_bot_of_isAlgClosed_of_isAlgebraic
algebraicClosure.isAlgebraic

Splits

Theorems

NameKindAssumesProvesValidatesDepends On
algebraicClosure 📖mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
algebraicClosure
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IntermediateField.splits_of_splits
instIsDomain
IsAlgebraic.isIntegral
isAlgebraic_of_mem_rootSet

Transcendental

Theorems

NameKindAssumesProvesValidatesDepends On
algebraicClosure 📖mathematicalTranscendental
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
algebraicClosure
IntermediateField.toField
IntermediateField.instAlgebraSubtypeMem
Ring.toSemiring
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
extendScalars
IsScalarTower.left
IntermediateField.isScalarTower_mid'
SubsemiringClass.noZeroDivisors
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsDomain.to_noZeroDivisors
instIsDomain
algebraicClosure.isAlgebraic

(root)

Definitions

NameCategoryTheorems
algebraicClosure 📖CompOp
23 mathmath: algebraicClosure.algebraicClosure_eq_bot, algebraicClosure.normalClosure_eq_self, algebraicClosure.isAlgebraic, algebraicClosure.isIntegralClosure, mem_algebraicClosure_iff, le_algebraicClosure, Splits.algebraicClosure, Transcendental.algebraicClosure, algebraicClosure.map_le_of_algHom, algebraicClosure.le_restrictScalars, algebraicClosure_toSubalgebra, algebraicClosure.eq_top_iff, algebraicClosure.adjoin_le, map_mem_algebraicClosure_iff, mem_algebraicClosure_iff', le_algebraicClosure_iff, AlgebraicIndependent.algebraicClosure, algebraicClosure.isAlgClosure, IsAlgClosed.algebraicClosure_eq_bot_iff, algebraicClosure.map_eq_of_algEquiv, algebraicClosure.eq_restrictScalars_of_isAlgebraic, algebraicClosure.comap_eq_of_algHom, le_algebraicClosure'

Theorems

NameKindAssumesProvesValidatesDepends On
algebraicClosure_toSubalgebra 📖mathematicalIntermediateField.toSubalgebra
algebraicClosure
integralClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
le_algebraicClosure 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
algebraicClosure
IsScalarTower.left
le_algebraicClosure'
Algebra.IsAlgebraic.isAlgebraic
le_algebraicClosure' 📖mathematicalIsAlgebraic
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
algebraicClosure
IsScalarTower.left
Polynomial.aeval_algebraMap_eq_zero_iff
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsScalarTower.right
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IntermediateField.isScalarTower_mid'
le_algebraicClosure_iff 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
algebraicClosure
Algebra.IsAlgebraic
SetLike.instMembership
IntermediateField.instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
Polynomial.aeval_algebraMap_eq_zero_iff
IsLocalRing.toNontrivial
Field.instIsLocalRing
IntermediateField.isScalarTower_mid'
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IsScalarTower.right
RingHomCompTriple.comp_apply
RingHomCompTriple.ids
le_algebraicClosure
map_mem_algebraicClosure_iff 📖mathematicalIntermediateField
SetLike.instMembership
IntermediateField.instSetLike
algebraicClosure
DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.funLike
IsLocalRing.toNontrivial
Field.instIsLocalRing
minpoly.algHom_eq
RingHom.injective
DivisionRing.isSimpleRing
mem_algebraicClosure_iff 📖mathematicalIntermediateField
SetLike.instMembership
IntermediateField.instSetLike
algebraicClosure
IsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
isAlgebraic_iff_isIntegral
mem_algebraicClosure_iff' 📖mathematicalIntermediateField
SetLike.instMembership
IntermediateField.instSetLike
algebraicClosure
IsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing

algebraicClosure

Definitions

NameCategoryTheorems
algEquivOfAlgEquiv 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_le 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
IntermediateField.adjoin
SetLike.coe
IntermediateField.instSetLike
algebraicClosure
IntermediateField.adjoin_le_iff
le_restrictScalars
algebraicClosure_eq_bot 📖mathematicalalgebraicClosure
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
bot_unique
IntermediateField.mem_bot
isIntegral_trans
IsScalarTower.left
IntermediateField.isScalarTower_mid'
Algebra.IsAlgebraic.isIntegral
isAlgebraic
mem_algebraicClosure_iff'
comap_eq_of_algHom 📖mathematicalIntermediateField.comap
algebraicClosure
IntermediateField.ext
map_mem_algebraicClosure_iff
eq_restrictScalars_of_isAlgebraic 📖mathematicalalgebraicClosure
IntermediateField.restrictScalars
LE.le.antisymm
le_restrictScalars
isIntegral_trans
Algebra.IsAlgebraic.isIntegral
eq_top_iff 📖mathematicalalgebraicClosure
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Algebra.IsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
mem_algebraicClosure_iff
IntermediateField.mem_top
top_unique
Algebra.IsAlgebraic.isAlgebraic
isAlgClosure 📖mathematicalIsAlgClosure
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
algebraicClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
GroupWithZero.toNoZeroSMulDivisors
DivisionSemiring.toGroupWithZero
SubNegMonoid.toAddMonoid
SubNegZeroMonoid.toSubNegMonoid
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddCommGroup.toAddCommMonoid
IsScalarTower.left
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
IsAlgClosed.algebraicClosure_eq_bot_iff
algebraicClosure_eq_bot
isAlgebraic
isAlgebraic 📖mathematicalAlgebra.IsAlgebraic
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
algebraicClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
IntermediateField.isAlgebraic_iff
IsIntegral.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
isIntegralClosure 📖mathematicalIsIntegralClosure
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
algebraicClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IntermediateField.instAlgebraSubtypeMem
CommSemiring.toSemiring
CommRing.toCommSemiring
Algebra.id
integralClosure.isIntegralClosure
le_restrictScalars 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
algebraicClosure
IntermediateField.restrictScalars
mem_algebraicClosure_iff
IsAlgebraic.tower_top
map_eq_of_algEquiv 📖mathematicalIntermediateField.map
AlgHomClass.toAlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
algebraicClosure
LE.le.antisymm
map_le_of_algHom
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
map_mem_algebraicClosure_iff
AlgEquiv.apply_symm_apply
map_eq_of_algebraicClosure_eq_bot 📖mathematicalalgebraicClosure
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IntermediateField.map
IsScalarTower.toAlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
le_antisymm
map_le_of_algHom
IntermediateField.mem_bot
mem_algebraicClosure_iff'
IsIntegral.tower_top
map_mem_algebraicClosure_iff
map_le_of_algHom 📖mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
IntermediateField.map
algebraicClosure
IntermediateField.map_le_iff_le_comap
Eq.ge
comap_eq_of_algHom
normalClosure_eq_self 📖mathematicalIntermediateField.normalClosure
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
algebraicClosure
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
le_antisymm
IsScalarTower.left
normalClosure_le_iff
le_algebraicClosure
AlgEquiv.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
isAlgebraic
IntermediateField.le_normalClosure

---

← Back to Index