Documentation Verification Report

CardinalEmb

πŸ“ Source: Mathlib/FieldTheory/CardinalEmb.lean

Statistics

MetricCount
DefinitionsembEquivPi, embFunctor, equivLim, equivSucc, factor, filtration, leastExt, succEquiv, wellOrderedBasis
9
Theoremsadjoin_basis_eq_top, adjoin_image_leastExt, deg_lt_aleph0, directed_filtration, eq_bot_of_not_nonempty, equivLim_coherence, equivSucc_coherence, filtration_apply, filtration_succ, iSup_adjoin_eq_top, iSup_filtration, instFiniteDimensionalSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor, instIsSeparableSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, isLeast_leastExt, noMaxOrder_rank_toType, strictMono_filtration, strictMono_leastExt, succEquiv_coherence, two_le_deg, cardinal_eq, cardinal_eq_of_isSeparable, cardinal_eq_two_pow_rank, cardinal_eq_two_pow_sepDegree
24
Total33

Field.Emb

Theorems

NameKindAssumesProvesValidatesDepends On
cardinal_eq πŸ“–mathematicalβ€”Field.Emb
Field.sepDegree
β€”Nat.instAtLeastTwoHAddOfNat
IsScalarTower.left
cardinal_separableClosure
cardinal_eq_of_isSeparable
separableClosure.isSeparable
cardinal_eq_of_isSeparable πŸ“–mathematicalβ€”Field.Emb
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”Nat.instAtLeastTwoHAddOfNat
cardinal_eq_two_pow_rank
Module.finrank_eq_rank
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
Module.IsNoetherian.finite
IsNoetherian.iff_rank_lt_aleph0
not_le
Module.Projective.of_free
Module.Free.of_divisionRing
Cardinal.toNat_eq_iff
LT.lt.ne'
Module.finrank_pos
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Nat.card.eq_1
Field.finSepDegree.eq_1
Field.finSepDegree_eq_finrank_of_isSeparable
cardinal_eq_two_pow_rank πŸ“–mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Field.Emb
Cardinal.instPowCardinal
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
Equiv.cardinal_eq
Cardinal.mk_pi
le_antisymm
Cardinal.power_eq_two_power
Cardinal.natCast_le_aleph0
Cardinal.mk_ord_toType
Cardinal.prod_const'
Cardinal.prod_le_prod
LT.lt.le
Cardinal.deg_lt_aleph0
Cardinal.two_le_deg
cardinal_eq_two_pow_sepDegree πŸ“–mathematicalCardinal
Cardinal.instLE
Cardinal.aleph0
Field.sepDegree
Field.Emb
Cardinal.instPowCardinal
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
IsScalarTower.left
cardinal_separableClosure
cardinal_eq_two_pow_rank
separableClosure.isSeparable

Field.Emb.Cardinal

Definitions

NameCategoryTheorems
embEquivPi πŸ“–CompOpβ€”
embFunctor πŸ“–CompOp
3 mathmath: equivLim_coherence, instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor, equivSucc_coherence
equivLim πŸ“–CompOp
1 mathmath: equivLim_coherence
equivSucc πŸ“–CompOp
1 mathmath: equivSucc_coherence
factor πŸ“–CompOp
1 mathmath: equivSucc_coherence
filtration πŸ“–CompOp
7 mathmath: equivLim_coherence, directed_filtration, instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor, equivSucc_coherence, eq_bot_of_not_nonempty, filtration_apply, iSup_filtration
leastExt πŸ“–CompOp
12 mathmath: filtration_succ, two_le_deg, isLeast_leastExt, succEquiv_coherence, instIsSeparableSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, strictMono_leastExt, filtration_apply, deg_lt_aleph0, strictMono_filtration, iSup_adjoin_eq_top, adjoin_image_leastExt, instFiniteDimensionalSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet
succEquiv πŸ“–CompOp
1 mathmath: succEquiv_coherence
wellOrderedBasis πŸ“–CompOp
12 mathmath: filtration_succ, two_le_deg, isLeast_leastExt, succEquiv_coherence, instIsSeparableSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, filtration_apply, deg_lt_aleph0, strictMono_filtration, iSup_adjoin_eq_top, adjoin_image_leastExt, instFiniteDimensionalSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, adjoin_basis_eq_top

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_basis_eq_top πŸ“–mathematicalβ€”IntermediateField.adjoin
Set.range
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
wellOrderedBasis
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”IntermediateField.toSubalgebra_injective
Subalgebra.toSubmodule_injective
top_unique
LE.le.trans
Eq.ge
Module.Basis.span_eq
Algebra.span_le_adjoin
IntermediateField.algebra_adjoin_le_adjoin
adjoin_image_leastExt πŸ“–mathematicalβ€”IntermediateField.adjoin
Set.image
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
wellOrderedBasis
leastExt
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
β€”le_antisymm
IntermediateField.adjoin.mono
Set.image_comp
Set.image_mono
strictMono_leastExt
IntermediateField.adjoin_le_iff
Mathlib.Tactic.Contrapose.contrapose₁
LE.le.not_gt
isLeast_leastExt
deg_lt_aleph0 πŸ“–mathematicalβ€”Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
Field.Emb
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set.image
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
wellOrderedBasis
leastExt
Set.Iio
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
IntermediateField.toField
IntermediateField.instAlgebraSubtypeMem
Algebra.id
Set
Set.instSingletonSet
IntermediateField.instAlgebraSubtypeMem_1
Cardinal.aleph0
β€”Cardinal.lt_aleph0_of_finite
Finite.algHom
Module.Free.of_divisionRing
instFiniteDimensionalSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet
instIsDomain
directed_filtration πŸ“–mathematicalβ€”Directed
IntermediateField
Set.Elem
WithTop
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Set.Iio
WithTop.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
Preorder.toLE
IntermediateField.instPartialOrder
DFunLike.coe
OrderEmbedding
instFunLikeOrderEmbedding
filtration
Set
Set.instMembership
β€”Monotone.directed_le
SemilatticeSup.instIsDirectedOrder
Monotone.comp
OrderEmbedding.monotone
Subtype.mono_coe
eq_bot_of_not_nonempty πŸ“–mathematicalOrder.IsSuccPrelimit
WithTop
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Preorder.toLT
WithTop.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
Set.Elem
Set.Iio
DFunLike.coe
OrderEmbedding
IntermediateField
Preorder.toLE
IntermediateField.instPartialOrder
instFunLikeOrderEmbedding
filtration
Bot.bot
OrderBot.toBot
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”Cardinal.mk_ne_zero_iff
LT.lt.ne'
LT.lt.trans_eq
rank_pos
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IsLocalRing.toNontrivial
Field.instIsLocalRing
Cardinal.mk_ord_toType
WithTop.range_coe
Set.instNonemptyRange
bot_unique
IntermediateField.adjoin_le_iff
WithTop.coe_lt_coe
equivLim_coherence πŸ“–mathematicalOrder.IsSuccPrelimit
WithTop
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Preorder.toLT
WithTop.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
Set
Set.instMembership
InverseSystem.limit
AlgHom
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
DFunLike.coe
OrderEmbedding
Preorder.toLE
IntermediateField.instPartialOrder
instFunLikeOrderEmbedding
filtration
AlgebraicClosure
IntermediateField.toField
AlgebraicClosure.instField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
AlgebraicClosure.instAlgebra
embFunctor
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
equivLim
Set.Iio
LT.lt.le
Set.mem_Iio
β€”IsScalarTower.left
equivSucc_coherence πŸ“–mathematicalβ€”AlgHom
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
DFunLike.coe
OrderEmbedding
WithTop
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Preorder.toLE
WithTop.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
IntermediateField.instPartialOrder
instFunLikeOrderEmbedding
filtration
AlgebraicClosure
IntermediateField.toField
AlgebraicClosure.instField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
AlgebraicClosure.instAlgebra
factor
Equiv
Order.succ
WithTop.instSuccOrder
EquivLike.toFunLike
Equiv.instEquivLike
equivSucc
embFunctor
Order.le_succ
β€”IsScalarTower.left
Order.le_succ
succEquiv_coherence
filtration_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
WithTop
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
IntermediateField
Preorder.toLE
WithTop.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
IntermediateField.instPartialOrder
RelEmbedding.instFunLike
filtration
WithTop.recTopCoe
Top.top
OrderTop.toTop
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
IntermediateField.adjoin
Set.image
Module.Basis
Module.Basis.instFunLike
wellOrderedBasis
leastExt
Set.Iio
β€”Set.image_congr
filtration_succ πŸ“–mathematicalβ€”IntermediateField.adjoin
Set.image
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
wellOrderedBasis
leastExt
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
Order.succ
IntermediateField.restrictScalars
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
Set
Set.instSingletonSet
β€”IsScalarTower.left
IntermediateField.isScalarTower_mid'
Order.Iio_succ
noMaxOrder_rank_toType
Set.Iio_insert
Set.image_insert_eq
Set.union_singleton
IntermediateField.adjoin_adjoin_left
iSup_adjoin_eq_top πŸ“–mathematicalβ€”iSup
IntermediateField
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
IntermediateField.adjoin
Set.image
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
wellOrderedBasis
leastExt
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
Top.top
OrderTop.toTop
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”adjoin_image_leastExt
le_iSup
IntermediateField.subset_adjoin
LT.lt.trans_le
Order.lt_succ
noMaxOrder_rank_toType
StrictMono.le_apply
wellFoundedLT_toType
strictMono_leastExt
iSup_filtration πŸ“–mathematicalOrder.IsSuccPrelimit
WithTop
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Preorder.toLT
WithTop.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
iSup
IntermediateField
Set.Elem
Set.Iio
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
DFunLike.coe
OrderEmbedding
Preorder.toLE
IntermediateField.instPartialOrder
instFunLikeOrderEmbedding
filtration
Set
Set.instMembership
β€”WithTop.range_coe
iSup_range'
iSup_adjoin_eq_top
LE.le.antisymm
iSup_le
OrderEmbedding.monotone
LT.lt.le
Set.mem_Iio
IntermediateField.adjoin_le_iff
le_iSup
Order.IsSuccPrelimit.succ_lt
WithTop.coe_lt_coe
IntermediateField.subset_adjoin
Order.lt_succ
noMaxOrder_rank_toType
instFiniteDimensionalSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet πŸ“–mathematicalβ€”FiniteDimensional
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set.image
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
wellOrderedBasis
leastExt
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
IntermediateField.toField
IntermediateField.instAlgebraSubtypeMem
Algebra.id
Set
Set.instSingletonSet
Field.toDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
IntermediateField.instModuleSubtypeMem_1
β€”IntermediateField.adjoin.finiteDimensional
IsAlgebraic.isIntegral
Algebra.IsAlgebraic.isAlgebraic
Algebra.IsAlgebraic.tower_top
IsScalarTower.left
IntermediateField.isScalarTower_mid'
instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor πŸ“–mathematicalβ€”InverseSystem
WithTop
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
WithTop.instPreorder
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
AlgHom
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
DFunLike.coe
OrderEmbedding
Preorder.toLE
IntermediateField.instPartialOrder
instFunLikeOrderEmbedding
filtration
AlgebraicClosure
IntermediateField.toField
AlgebraicClosure.instField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
AlgebraicClosure.instAlgebra
embFunctor
β€”IsScalarTower.left
le_rfl
instIsSeparableSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet πŸ“–mathematicalβ€”Algebra.IsSeparable
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set.image
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
wellOrderedBasis
leastExt
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
IntermediateField.toField
IntermediateField.instAlgebraSubtypeMem
Algebra.id
Set
Set.instSingletonSet
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.instAlgebraSubtypeMem_1
β€”Algebra.isSeparable_tower_top_of_isSeparable
IsScalarTower.left
IntermediateField.isScalarTower_mid'
IsScalarTower.of_algebraMap_eq'
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
Algebra.isSeparable_tower_bot_of_isSeparable
IsLocalRing.toNontrivial
Field.instIsLocalRing
isLeast_leastExt πŸ“–mathematicalβ€”IsLeast
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
setOf
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set.image
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
wellOrderedBasis
leastExt
Set.Iio
β€”Set.image_eq_range
leastExt.eq_1
wellFounded_lt
wellFoundedLT_toType
WellFounded.min_mem
WellFounded.min_le
noMaxOrder_rank_toType πŸ“–mathematicalβ€”NoMaxOrder
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
β€”Cardinal.noMaxOrder
Fact.out
strictMono_filtration πŸ“–mathematicalβ€”StrictMono
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
IntermediateField
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
IntermediateField.instPartialOrder
IntermediateField.adjoin
Set.image
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
wellOrderedBasis
leastExt
Set.Iio
β€”IntermediateField.adjoin.mono
Set.image_mono
Set.Iio_subset_Iio
LT.lt.le
isLeast_leastExt
IntermediateField.subset_adjoin
strictMono_leastExt πŸ“–mathematicalβ€”StrictMono
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
leastExt
β€”isLeast_leastExt
LE.le.eq_or_lt
IntermediateField.subset_adjoin
LE.le.not_gt
IntermediateField.adjoin.mono
Set.image_mono
LT.lt.trans
succEquiv_coherence πŸ“–mathematicalβ€”AlgHom
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set.image
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
wellOrderedBasis
leastExt
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
AlgebraicClosure
IntermediateField.toField
AlgebraicClosure.instField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
AlgebraicClosure.instAlgebra
Field.Emb
IntermediateField.instAlgebraSubtypeMem
Set
Set.instSingletonSet
IntermediateField.instAlgebraSubtypeMem_1
Equiv
Order.succ
EquivLike.toFunLike
Equiv.instEquivLike
succEquiv
AlgHom.comp
Subalgebra
Subalgebra.instSetLike
IntermediateField.toSubalgebra
Subalgebra.toSemiring
Subalgebra.algebra
Subalgebra.inclusion
StrictMono.monotone
IntermediateField.instPartialOrder
strictMono_filtration
Order.le_succ
β€”IsScalarTower.left
AlgHom.ext
StrictMono.monotone
strictMono_filtration
Order.le_succ
filtration_succ
two_le_deg πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
instOfNatAtLeastTwo
Cardinal.instNatCast
Nat.instAtLeastTwoHAddOfNat
Field.Emb
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set.image
Ordinal.ToType
Cardinal.ord
Module.rank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
DFunLike.coe
Module.Basis
Module.Basis.instFunLike
wellOrderedBasis
leastExt
Set.Iio
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
linearOrder_toType
IntermediateField.toField
IntermediateField.instAlgebraSubtypeMem
Algebra.id
Set
Set.instSingletonSet
IntermediateField.instAlgebraSubtypeMem_1
β€”Nat.instAtLeastTwoHAddOfNat
Nat.cast_ofNat
Cardinal.toNat_le_iff_le_of_lt_aleph0
Cardinal.natCast_lt_aleph0
deg_lt_aleph0
Cardinal.toNat_natCast
Nat.card.eq_1
Field.finSepDegree.eq_1
Field.finSepDegree_eq_finrank_of_isSeparable
instIsSeparableSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet
IsScalarTower.left
IntermediateField.finrank_adjoin_simple_eq_one_iff
LE.le.antisymm
Module.finrank_pos
commRing_strongRankCondition
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
instFiniteDimensionalSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
isLeast_leastExt

---

← Back to Index