Documentation Verification Report

Cardinality

📁 Source: Mathlib/FieldTheory/Cardinality.lean

Statistics

MetricCount
Definitions0
Theoremsnonempty_iff, isPrimePow_card_of_field, nonempty_field_iff, not_isField_of_card_not_prime_pow, nonempty_field
5
Total5

Field

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_iff 📖mathematicalField
IsPrimePow
Cardinal
Cardinal.instCommMonoidWithZero
Cardinal.isPrimePow_iff
Cardinal.mk_fintype
LT.lt.not_ge
Cardinal.natCast_lt_aleph0
Cardinal.instCharZero
Fintype.nonempty_field_iff
Infinite.nonempty_field

Fintype

Theorems

NameKindAssumesProvesValidatesDepends On
isPrimePow_card_of_field 📖mathematicalIsPrimePow
Nat.instCommMonoidWithZero
card
FiniteField.isPrimePow_card
nonempty_field_iff 📖mathematicalField
IsPrimePow
Nat.instCommMonoidWithZero
card
isPrimePow_card_of_field
Prime.nat_prime
card_eq_nat_card
GaloisField.card
LT.lt.ne'
not_isField_of_card_not_prime_pow 📖mathematicalIsPrimePow
Nat.instCommMonoidWithZero
card
IsField
Ring.toSemiring
nonempty_field_iff

Infinite

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty_field 📖mathematicalFieldCardinal.mk_fractionRing
MvPolynomial.cardinalMk_eq_max_lift
Nontrivial.to_nonempty
instNontrivial
ULift.nontrivial
Rat.nontrivial
Cardinal.mk_eq_aleph0
instCountableULift
Encodable.countable
instInfiniteULift
NoMinOrder.infinite
instNoMinOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
Cardinal.lift_id
sup_of_le_right
sup_of_le_left
Nonempty.map
MvPolynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
instIsDomain
Cardinal.eq

---

← Back to Index