Documentation Verification Report

Basic

πŸ“ Source: Mathlib/FieldTheory/Differential/Basic.lean

Statistics

MetricCount
DefinitionsdifferentialFiniteDimensional, instAdjoinRootOfIrreduciblePolynomialOfFactMonic, instSubtypeMemIntermediateFieldOfFiniteDimensional, logDeriv, uniqueDifferentialAlgebraFiniteDimensional
5
TheoremsdifferentialAlgebraFiniteDimensional, instDifferentialAlgebraAdjoinRoot, instDifferentialAlgebraSubtypeMemIntermediateField, instDifferentialAlgebraSubtypeMemIntermediateField_1, logDeriv_algebraMap, logDeriv_div, logDeriv_eq_zero, logDeriv_mul, logDeriv_multisetProd, logDeriv_one, logDeriv_pow, logDeriv_prod, logDeriv_prod_of_eq_zero, logDeriv_zero, coe_logDeriv
15
Total20

Differential

Definitions

NameCategoryTheorems
differentialFiniteDimensional πŸ“–CompOp
1 mathmath: differentialAlgebraFiniteDimensional
instAdjoinRootOfIrreduciblePolynomialOfFactMonic πŸ“–CompOp
1 mathmath: instDifferentialAlgebraAdjoinRoot
instSubtypeMemIntermediateFieldOfFiniteDimensional πŸ“–CompOp
3 mathmath: instIsLiouvilleSubtypeMemIntermediateField, instDifferentialAlgebraSubtypeMemIntermediateField_1, instDifferentialAlgebraSubtypeMemIntermediateField
logDeriv πŸ“–CompOp
11 mathmath: logDeriv_prod, algebraMap.coe_logDeriv, logDeriv_prod_of_eq_zero, logDeriv_div, logDeriv_one, logDeriv_mul, logDeriv_zero, logDeriv_pow, logDeriv_algebraMap, logDeriv_eq_zero, logDeriv_multisetProd
uniqueDifferentialAlgebraFiniteDimensional πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
differentialAlgebraFiniteDimensional πŸ“–mathematicalβ€”DifferentialAlgebra
EuclideanDomain.toCommRing
Field.toEuclideanDomain
differentialFiniteDimensional
β€”Field.exists_primitive_element
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
PerfectField.ofCharZero
DifferentialAlgebra.equiv
instDifferentialAlgebraAdjoinRoot
instDifferentialAlgebraAdjoinRoot πŸ“–mathematicalβ€”DifferentialAlgebra
AdjoinRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AdjoinRoot.instCommRing
AdjoinRoot.instAlgebra
CommRing.toCommSemiring
Algebra.id
instAdjoinRootOfIrreduciblePolynomialOfFactMonic
β€”Derivation.liftOfSurjective_apply
implicitDeriv_C
instDifferentialAlgebraSubtypeMemIntermediateField πŸ“–mathematicalβ€”DifferentialAlgebra
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
instSubtypeMemIntermediateFieldOfFiniteDimensional
β€”IsScalarTower.left
differentialAlgebraFiniteDimensional
instDifferentialAlgebraSubtypeMemIntermediateField_1 πŸ“–mathematicalβ€”DifferentialAlgebra
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.toField
IntermediateField.instAlgebraSubtypeMem
CommSemiring.toSemiring
CommRing.toCommSemiring
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
instSubtypeMemIntermediateFieldOfFiniteDimensional
β€”IsScalarTower.left
algHom_deriv'
instDifferentialAlgebraSubtypeMemIntermediateField
instIsDomain
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsSeparable.isAlgebraic
Algebra.IsSeparable.of_integral
Algebra.IsIntegral.of_finite
PerfectField.ofCharZero
Subtype.val_injective
logDeriv_algebraMap πŸ“–mathematicalβ€”logDeriv
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
β€”DifferentialAlgebra.deriv_algebraMap
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
logDeriv_div πŸ“–mathematicalβ€”logDeriv
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”Derivation.leibniz_div
inv_pow
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.pow_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.div_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
logDeriv_eq_zero πŸ“–mathematicalβ€”logDeriv
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DFunLike.coe
Derivation
Int.instCommSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
Ring.toIntAlgebra
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
AddCommGroup.toIntModule
Ring.toAddCommGroup
Derivation.instFunLike
deriv
β€”map_zero
AddMonoidHomClass.toZeroHomClass
Derivation.instAddMonoidHomClass
zero_div
logDeriv_mul πŸ“–mathematicalβ€”logDeriv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toAdd
β€”Derivation.leibniz
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.one_div_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
logDeriv_multisetProd πŸ“–mathematicalβ€”logDeriv
Multiset.prod
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Multiset.map
Multiset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Multiset.induction_on
logDeriv_one
Multiset.map_cons
Multiset.prod_cons
Multiset.sum_cons
logDeriv_mul
IsDomain.to_noZeroDivisors
instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
logDeriv_one πŸ“–mathematicalβ€”logDeriv
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”Derivation.map_one_eq_zero
div_one
logDeriv_pow πŸ“–mathematicalβ€”logDeriv
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”pow_zero
logDeriv_one
Nat.cast_zero
MulZeroClass.zero_mul
eq_or_ne
zero_pow
logDeriv_zero
Nat.cast_add
Nat.cast_one
MulZeroClass.mul_zero
add_mul
Distrib.rightDistribClass
one_mul
pow_succ
logDeriv_mul
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
logDeriv_prod πŸ“–mathematicalβ€”logDeriv
Finset.prod
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”logDeriv_multisetProd
logDeriv_prod_of_eq_zero πŸ“–mathematicalMulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
logDeriv
Finset.prod
CommRing.toCommMonoid
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
β€”Finset.prod_congr
Finset.prod_const
Derivation.leibniz_pow
map_zero
AddMonoidHomClass.toZeroHomClass
Derivation.instAddMonoidHomClass
MulZeroClass.mul_zero
nsmul_zero
zero_div
Finset.sum_congr
div_zero
Finset.sum_const_zero
logDeriv_zero πŸ“–mathematicalβ€”logDeriv
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”map_zero
AddMonoidHomClass.toZeroHomClass
Derivation.instAddMonoidHomClass
div_zero

algebraMap

Theorems

NameKindAssumesProvesValidatesDepends On
coe_logDeriv πŸ“–mathematicalβ€”Algebra.cast
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Differential.logDeriv
β€”Differential.logDeriv_algebraMap

---

← Back to Index