Documentation Verification Report

Liouville

πŸ“ Source: Mathlib/FieldTheory/Differential/Liouville.lean

Statistics

MetricCount
DefinitionsIsLiouville, Liouville
2
Theoremsequiv, isLiouville, rfl, trans, instIsLiouvilleSubtypeMemIntermediateField, isLiouville_of_finiteDimensional
6
Total8

IsLiouville

Theorems

NameKindAssumesProvesValidatesDepends On
equiv πŸ“–mathematicalβ€”IsLiouvilleβ€”isLiouville
Finset.sum_congr
AlgEquiv.commutes
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
Differential.algEquiv_deriv'
instIsDomain
Algebra.IsAlgebraic.isSeparable_of_perfectField
PerfectField.ofCharZero
isLiouville πŸ“–β€”DFunLike.coe
Derivation
Int.instCommSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Ring.toIntAlgebra
CommRing.toRing
Semiring.toModule
CommSemiring.toSemiring
AddCommGroup.toIntModule
Ring.toAddCommGroup
Derivation.instFunLike
Differential.deriv
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Algebra.cast
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Finset.sum
Finset.univ
Distrib.toMul
Differential.logDeriv
β€”β€”β€”
rfl πŸ“–mathematicalβ€”IsLiouville
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
β€”β€”
trans πŸ“–mathematicalβ€”IsLiouvilleβ€”isLiouville
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Finset.sum_congr
mem_range_of_deriv_eq_zero
FaithfulSMul.algebraMap_injective
algebraMap.coe_deriv
algebraMap.coe_zero

(root)

Definitions

NameCategoryTheorems
IsLiouville πŸ“–CompData
5 mathmath: IsLiouville.rfl, instIsLiouvilleSubtypeMemIntermediateField, isLiouville_of_finiteDimensional, IsLiouville.trans, IsLiouville.equiv
Liouville πŸ“–MathDef
9 mathmath: dense_liouville, volume_setOf_liouville, forall_liouvilleWith_iff, IsGΞ΄.setOf_liouville, setOf_liouville_eq_iInter_iUnion, ae_not_liouville, liouville_liouvilleNumber, eventually_residual_liouville, setOf_liouville_eq_irrational_inter_iInter_iUnion

Theorems

NameKindAssumesProvesValidatesDepends On
instIsLiouvilleSubtypeMemIntermediateField πŸ“–mathematicalβ€”IsLiouville
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
Differential.instSubtypeMemIntermediateFieldOfFiniteDimensional
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
IsLiouville.isLiouville
Differential.logDeriv_algebraMap
Differential.instDifferentialAlgebraSubtypeMemIntermediateField_1
DifferentialAlgebra.deriv_algebraMap
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.algebraMap_apply
IntermediateField.isScalarTower_mid'
Finset.sum_congr
IntermediateField.instFaithfulSMulSubtypeMem
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.self
IsLocalRing.toNontrivial
Field.instIsLocalRing
isLiouville_of_finiteDimensional πŸ“–mathematicalβ€”IsLiouvilleβ€”AlgebraicClosure.isAlgClosed
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsSeparable.of_integral
Algebra.IsIntegral.of_finite
PerfectField.ofCharZero
AlgebraicClosure.instIsScalarTower
IsScalarTower.right
LinearMap.finiteDimensional_range
IntermediateField.le_normalClosure
IntermediateField.isScalarTower
IsLiouville.equiv
IntermediateField.finiteDimensional_left
normalClosure.is_finiteDimensional
Differential.instDifferentialAlgebraSubtypeMemIntermediateField
instIsLiouvilleSubtypeMemIntermediateField
IsGalois.normalClosure
IsAlgClosure.isGalois
AlgebraicClosure.instIsAlgClosureOfIsAlgebraic
Normal.toIsAlgebraic
normal_self

---

← Back to Index