Documentation Verification Report

Extension

πŸ“ Source: Mathlib/FieldTheory/Extension.lean

Statistics

MetricCount
DefinitionsIsExtendible, carrier, emb, instInhabited, instOrderBot, instPartialOrder, union
7
Theoremsrange_eval_eq_rootSet_minpoly_of_splits, carrier_union, eq_iff, eq_iff_le_carrier_eq, exists_lift_of_splits, exists_lift_of_splits', exists_upper_bound, le_iff, le_of_carrier_le_iSup, le_union, lt_iff, lt_iff_le_carrier_ne, nonempty_algHom_of_exist_lifts_finset, union_isExtendible, exists_algHom_adjoin_of_splits, exists_algHom_adjoin_of_splits', exists_algHom_adjoin_of_splits_of_aeval, exists_algHom_of_adjoin_splits, exists_algHom_of_adjoin_splits', exists_algHom_of_adjoin_splits_of_aeval, exists_algHom_of_splits, exists_algHom_of_splits', exists_algHom_of_splits_of_aeval, nonempty_algHom_adjoin_of_splits, nonempty_algHom_of_adjoin_splits, nonempty_algHom_of_splits
26
Total33

Algebra.IsAlgebraic

Theorems

NameKindAssumesProvesValidatesDepends On
range_eval_eq_rootSet_minpoly_of_splits πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Set.range
AlgHom
DFunLike.coe
AlgHom.funLike
Polynomial.rootSet
instIsDomain
β€”Set.ext
instIsDomain
Polynomial.mem_rootSet_of_ne
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
minpoly.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Algebra.IsIntegral.isIntegral
isIntegral
Polynomial.aeval_algHom_apply
AlgHom.algHomClass
minpoly.aeval
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
IntermediateField.exists_algHom_of_splits_of_aeval

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
exists_algHom_adjoin_of_splits πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
IntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
adjoin
AlgHom.comp
SetLike.instMembership
instSetLike
toField
algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
inclusion
β€”IsScalarTower.left
zorn_le_nonempty_Iciβ‚€
Lifts.exists_upper_bound
le_rfl
adjoin_le_iff
Lifts.exists_lift_of_splits
AlgHom.ext
exists_algHom_adjoin_of_splits' πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
AlgHom.toRingHom
Semifield.toCommSemiring
minpoly
AlgHom.restrictDomain
IntermediateField
SetLike.instMembership
instSetLike
adjoin
SubsemiringClass.toCommSemiring
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
isScalarTower
β€”IsScalarTower.left
IsLocalRing.toNontrivial
Field.instIsLocalRing
isScalarTower_mid'
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
instIsScalarTowerSubtypeMem_1
IsScalarTower.right
IsScalarTower.of_algebraMap_eq'
IsIntegral.tower_top
IsIntegral.minpoly_splits_tower_top'
RingHom.ext
AlgEquiv.symm_apply_apply
isScalarTower
instIsConcreteLE
subset_adjoin_of_subset_left
le_rfl
subset_adjoin
AlgHom.ext
exists_algHom_adjoin_of_splits_of_aeval πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
IntermediateField
SetLike.instMembership
instSetLike
adjoin
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
toField
algebra'
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
isAlgebraic_adjoin
Algebra.IsAlgebraic.isAlgebraic
adjoin_simple_le_iff
instIsDomain
isIntegral_iff
isAlgebraic_iff_isIntegral
Polynomial.mem_aroots
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
minpoly.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
exists_algHom_adjoin_of_splits
DFunLike.congr_fun
algHomAdjoinIntegralEquiv_symm_apply_gen
exists_algHom_of_adjoin_splits πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
adjoin
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
AlgHom.comp
SetLike.instMembership
instSetLike
toField
algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
val
β€”IsScalarTower.left
le_top
exists_algHom_adjoin_of_splits
exists_algHom_of_adjoin_splits' πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
AlgHom.toRingHom
Semifield.toCommSemiring
minpoly
adjoin
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
AlgHom.restrictDomainβ€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsScalarTower.left
isScalarTower
exists_algHom_adjoin_of_splits'
exists_algHom_of_adjoin_splits_of_aeval πŸ“–β€”IsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
adjoin
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”IsScalarTower.left
mem_top
exists_algHom_adjoin_of_splits_of_aeval
exists_algHom_of_splits πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
AlgHom.comp
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
val
β€”IsScalarTower.left
exists_algHom_of_adjoin_splits
adjoin_univ
exists_algHom_of_splits' πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
AlgHom.toRingHom
Semifield.toCommSemiring
minpoly
AlgHom.restrictDomainβ€”exists_algHom_of_adjoin_splits'
adjoin_univ
exists_algHom_of_splits_of_aeval πŸ“–β€”IsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”exists_algHom_of_adjoin_splits_of_aeval
adjoin_univ
nonempty_algHom_adjoin_of_splits πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
AlgHom
IntermediateField
SetLike.instMembership
instSetLike
adjoin
toField
algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
bot_le
exists_algHom_adjoin_of_splits
nonempty_algHom_of_adjoin_splits πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
adjoin
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
AlgHomβ€”IsScalarTower.left
exists_algHom_of_adjoin_splits
nonempty_algHom_of_splits πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
AlgHomβ€”nonempty_algHom_of_adjoin_splits
adjoin_univ

IntermediateField.Lifts

Definitions

NameCategoryTheorems
IsExtendible πŸ“–MathDefβ€”
carrier πŸ“–CompOp
6 mathmath: eq_iff_le_carrier_eq, lt_iff, exists_lift_of_splits, eq_iff, carrier_union, le_iff
emb πŸ“–CompOp
3 mathmath: lt_iff, eq_iff, le_iff
instInhabited πŸ“–CompOpβ€”
instOrderBot πŸ“–CompOpβ€”
instPartialOrder πŸ“–CompOp
6 mathmath: lt_iff_le_carrier_ne, exists_lift_of_splits', eq_iff_le_carrier_eq, lt_iff, exists_lift_of_splits, le_iff
union πŸ“–CompOp
3 mathmath: le_union, union_isExtendible, carrier_union

Theorems

NameKindAssumesProvesValidatesDepends On
carrier_union πŸ“–mathematicalIsChain
IntermediateField.Lifts
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
carrier
union
iSup
IntermediateField
Set.Elem
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
Set
Set.instMembership
β€”le_antisymm
iSup_le
bot_le
le_iSup_of_le
le_rfl
eq_iff πŸ“–mathematicalβ€”AlgHom.comp
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
carrier
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
EuclideanDomain.toCommRing
Field.toEuclideanDomain
emb
IntermediateField.inclusion
Eq.le
PartialOrder.toPreorder
IntermediateField.instPartialOrder
β€”IsScalarTower.left
Eq.le
eq_iff_le_carrier_eq
le_iff
eq_iff_le_carrier_eq πŸ“–mathematicalβ€”IntermediateField.Lifts
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
carrier
β€”Eq.le
LE.le.antisymm
Eq.ge
exists_lift_of_splits πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
IntermediateField.Lifts
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
carrier
β€”exists_lift_of_splits'
IsIntegral.tower_top
IsScalarTower.left
IntermediateField.isScalarTower_mid'
IsIntegral.minpoly_splits_tower_top'
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
exists_lift_of_splits' πŸ“–mathematicalIsIntegral
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
carrier
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.toField
DivisionRing.toRing
Field.toDivisionRing
IntermediateField.instAlgebraSubtypeMem
Ring.toSemiring
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.map
AlgHom.toRingHom
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
emb
minpoly
IntermediateField.Lifts
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”IsScalarTower.left
LT.lt.ne'
minpoly.degree_pos
IsLocalRing.toNontrivial
Field.instIsLocalRing
IntermediateField.isScalarTower_mid'
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
instIsDomain
Polynomial.degree_map
DivisionRing.isSimpleRing
Polynomial.mem_aroots
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
minpoly.ne_zero
SubsemiringClass.nontrivial
Polynomial.eval_map
Polynomial.eval_rootOfSplits
IsScalarTower.of_algebraMap_eq
IntermediateField.algebraMap_mem
AlgHom.commutes
IntermediateField.mem_adjoin_simple_self
exists_upper_bound πŸ“–β€”IsChain
IntermediateField.Lifts
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”β€”le_union
le_iff πŸ“–mathematicalβ€”IntermediateField.Lifts
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AlgHom.comp
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
carrier
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
EuclideanDomain.toCommRing
Field.toEuclideanDomain
emb
IntermediateField.inclusion
β€”IsScalarTower.left
le_of_carrier_le_iSup πŸ“–β€”IntermediateField.Lifts
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IntermediateField
IntermediateField.instPartialOrder
carrier
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
β€”β€”IsScalarTower.left
le_iff
LE.le.trans
iSup_le
IntermediateField.algHom_ext_of_eq_adjoin
LE.le.antisymm
IntermediateField.iSup_eq_adjoin
Eq.ge
IntermediateField.subset_adjoin
Set.mem_iUnion
le_union πŸ“–mathematicalIsChain
IntermediateField.Lifts
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set
Set.instMembership
unionβ€”Set.mem_insert_of_mem
le_iSup
Subalgebra.iSupLift_inclusion
Set.instNonemptyElemInsert
lt_iff πŸ“–mathematicalβ€”IntermediateField.Lifts
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
AlgHom.comp
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
carrier
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
EuclideanDomain.toCommRing
Field.toEuclideanDomain
emb
IntermediateField.inclusion
LT.lt.le
IntermediateField.instPartialOrder
β€”IsScalarTower.left
LT.lt.le
lt_iff_le_carrier_ne
le_iff
LE.le.lt_of_ne
LT.lt.ne
lt_iff_le_carrier_ne πŸ“–mathematicalβ€”IntermediateField.Lifts
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Preorder.toLE
β€”lt_iff_le_and_ne
nonempty_algHom_of_exist_lifts_finset πŸ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
IntermediateField
IntermediateField.instSetLike
carrier
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”bot_le
zorn_leβ‚€
isEmpty_or_nonempty
union_isExtendible
le_union
SetLike.exists_of_lt
instIsConcreteLE
Ne.lt_top
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.left
IntermediateField.finiteDimensional_adjoin
Finite.of_fintype
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
Algebra.IsAlgebraic.tower_top
IntermediateField.isScalarTower_mid'
IntermediateField.instIsScalarTowerSubtypeMem_1
IsScalarTower.right
IsScalarTower.of_algHom
LT.lt.le
lt_iff
IntermediateField.restrictScalars_adjoin_eq_sup
AlgHom.coe_ringHom_injective
AlgHom.comp_algebraMap
maximal_iff_forall_gt
instIsDomain
sup_le_iff
IntermediateField.adjoin_simple_le_iff
Set.iUnion_true
Set.iUnion_congr_Prop
Finset.coe_univ
Finset.coe_biUnion
Finset.coe_singleton
Finset.coe_union
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_eq
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
union_isExtendible πŸ“–mathematicalIsChain
IntermediateField.Lifts
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IsExtendible
unionβ€”IsScalarTower.left
IntermediateField.finiteDimensional_adjoin
Finite.of_fintype
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
Directed.finite_le
instIsTransLe
Finite.algHom
Module.Free.of_divisionRing
instIsDomain
IsChain.directed
instReflLe
IntermediateField.adjoin_le_iff
LE.le.trans
sup_le
le_sup_left
le_sup_right
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_eq
le_iff
IntermediateField.isScalarTower_mid'
IntermediateField.restrictScalars_adjoin
IntermediateField.adjoin.mono
Set.union_subset_union_left
IntermediateField.algHom_ext_of_eq_adjoin
Eq.ge
IntermediateField.subset_adjoin
IsChain.total
le_of_carrier_le_iSup
le_union
Eq.le
carrier_union
iSup_range'
HasSubset.Subset.trans
Set.instIsTransSubset
SetLike.coe_subset_coe
instIsConcreteLE
le_iSup_of_le
le_rfl

---

← Back to Index