Documentation Verification Report

Basic

πŸ“ Source: Mathlib/FieldTheory/Finite/Basic.lean

Statistics

MetricCount
DefinitionsfrobeniusAlgEquiv, frobeniusAlgEquivOfAlgebraic, frobeniusAlgHom, fintypeBot
4
Theoremssq_add_sq, X_pow_card_pow_sub_X_natDegree_eq, X_pow_card_pow_sub_X_ne_zero, X_pow_card_sub_X_natDegree_eq, X_pow_card_sub_X_ne_zero, bijective_frobeniusAlgEquivOfAlgebraic_pow, bijective_frobeniusAlgHom_pow, card, card', card_cast_subgroup_card_ne_zero, card_image_polynomial_eval, cast_card_eq_zero, coe_frobeniusAlgEquivOfAlgebraic, coe_frobeniusAlgEquivOfAlgebraic_iterate, coe_frobeniusAlgHom, even_card_iff_char_two, even_card_of_char_two, exists_nonsquare, exists_root_sum_quadratic, expand_card, forall_pow_eq_one_iff, frobeniusAlgEquivOfAlgebraic_apply, frobeniusAlgEquivOfAlgebraic_symm_apply, frobeniusAlgEquiv_apply, frobeniusAlgEquiv_symm_apply, frobeniusAlgHom_apply, frobenius_pow, instIsCyclicAlgEquivOfFinite, isPrimePow_card, isSquare_iff, isSquare_of_char_two, minpoly_frobeniusAlgHom, odd_card_of_char_ne_two, orderOf_frobeniusAlgEquivOfAlgebraic, orderOf_frobeniusAlgHom, pow_card, pow_card_pow, pow_card_sub_one_eq_one, pow_dichotomy, prod_univ_units_id_eq_neg_one, roots_X_pow_card_sub_X, sum_pow_lt_card_sub_one, sum_pow_units, sum_subgroup_pow_eq_zero, sum_subgroup_units, sum_subgroup_units_eq_zero, unit_isSquare_iff, pow_card_sub_one_eq_one, pow_eq_pow, pow_prime_eq_self, prime_dvd_pow_self_sub, prime_dvd_pow_sub_one, pow_card_sub_one_eq_one, pow_totient, pow_card_sub_one_sub_one_mod_card, sq_add_sq_modEq, sq_add_sq_zmodEq, card_bot, mem_bot_iff_pow_eq_self, roots_X_pow_char_sub_X_bot, splits_bot, card_units, eq_one_or_isUnit_sub_one, expand_card, fieldRange_castHom_eq_bot, frobenius_zmod, instSubsingletonSubfield, orderOf_dvd_card_sub_one, orderOf_units_dvd_card_sub_one, pow_card, pow_card_pow, pow_card_sub_one, pow_card_sub_one_eq_one, pow_totient, sq_add_sq, units_pow_card_sub_one_eq_one, instFiniteZModUnits, mem_bot_iff_intCast, pow_pow_modEq_one
79
Total83

CharP

Theorems

NameKindAssumesProvesValidatesDepends On
sq_add_sq πŸ“–mathematicalβ€”Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
AddGroupWithOne.toIntCast
β€”char_is_prime_of_pos
IsDomain.to_noZeroDivisors
IsDomain.toNontrivial
ZMod.sq_add_sq
ZMod.natCast_val
dvd_rfl
ZMod.cast_add
ZMod.cast_pow
map_intCast
RingHom.instRingHomClass

FiniteField

Definitions

NameCategoryTheorems
frobeniusAlgEquiv πŸ“–CompOp
2 mathmath: frobeniusAlgEquiv_symm_apply, frobeniusAlgEquiv_apply
frobeniusAlgEquivOfAlgebraic πŸ“–CompOp
6 mathmath: frobeniusAlgEquivOfAlgebraic_apply, orderOf_frobeniusAlgEquivOfAlgebraic, coe_frobeniusAlgEquivOfAlgebraic, frobeniusAlgEquivOfAlgebraic_symm_apply, coe_frobeniusAlgEquivOfAlgebraic_iterate, bijective_frobeniusAlgEquivOfAlgebraic_pow
frobeniusAlgHom πŸ“–CompOp
7 mathmath: frobeniusAlgHom_apply, frobeniusAlgEquiv_symm_apply, frobeniusAlgEquivOfAlgebraic_symm_apply, minpoly_frobeniusAlgHom, bijective_frobeniusAlgHom_pow, orderOf_frobeniusAlgHom, coe_frobeniusAlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
X_pow_card_pow_sub_X_natDegree_eq πŸ“–mathematicalβ€”Polynomial.natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Nat.instMonoid
β€”X_pow_card_sub_X_natDegree_eq
X_pow_card_pow_sub_X_ne_zero πŸ“–β€”β€”β€”β€”X_pow_card_sub_X_ne_zero
X_pow_card_sub_X_natDegree_eq πŸ“–mathematicalβ€”Polynomial.natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
β€”Polynomial.degree_X_pow
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.degree_X
Nat.cast_one
WithBot.addLeftMono
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
WithBot.zeroLEOneClass
Nat.instZeroLEOneClass
WithBot.charZero
Nat.instCharZero
Polynomial.natDegree_eq_of_degree_eq
Polynomial.degree_sub_eq_left_of_degree_lt
Polynomial.natDegree_X_pow
X_pow_card_sub_X_ne_zero πŸ“–β€”β€”β€”β€”Polynomial.ne_zero_of_natDegree_gt
X_pow_card_sub_X_natDegree_eq
bijective_frobeniusAlgEquivOfAlgebraic_pow πŸ“–mathematicalβ€”Function.Bijective
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
AlgEquiv
Monoid.toNatPow
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
frobeniusAlgEquivOfAlgebraic
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
DivisionRing.toRing
Field.toDivisionRing
Module.IsNoetherian.finite
CommSemiring.toSemiring
CommRing.toCommSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Ring.toSemiring
isNoetherian_of_isNoetherianRing_of_finite
Ring.toAddCommGroup
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
AddCommGroup.toAddCommMonoid
isNoetherian_of_finite
β€”instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.IsNoetherian.finite
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
isNoetherian_of_finite
Function.Bijective.of_comp_iff'
MulEquiv.bijective
map_pow
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
bijective_frobeniusAlgHom_pow
bijective_frobeniusAlgHom_pow πŸ“–mathematicalβ€”Function.Bijective
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
AlgHom
CommSemiring.toSemiring
CommRing.toCommSemiring
Monoid.toNatPow
AlgHom.End
frobeniusAlgHom
β€”orderOf_frobeniusAlgHom
orderOf_pos_iff
Module.finrank_pos
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.IsNoetherian.finite
isNoetherian_of_finite
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Function.Injective.bijective_of_nat_card_le
Finite.algHom
Module.Free.of_divisionRing
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
Subtype.val_injective
Equiv.injective
LE.le.trans_eq
card_algHom_le_finrank
Nat.card_eq_fintype_card
Fintype.card_fin
card πŸ“–mathematicalβ€”Nat.Prime
Fintype.card
Monoid.toNatPow
Nat.instMonoid
PNat.val
β€”NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
CharP.char_is_prime
IsDomain.to_noZeroDivisors
instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
Finite.of_fintype
VectorSpace.card_fintype
dvd_rfl
Fintype.card_le_one_iff
le_of_eq
pow_zero
zero_ne_one
NeZero.one
ZMod.card
Fact.out
card' πŸ“–mathematicalβ€”CharP
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Nat.Prime
Fintype.card
Monoid.toNatPow
Nat.instMonoid
PNat.val
β€”CharP.exists
card
card_cast_subgroup_card_ne_zero πŸ“–β€”β€”β€”β€”CharP.exists
CharP.cast_eq_zero_iff
CharP.char_is_prime_or_zero
exists_prime_orderOf_dvd_card
orderOf_units
Subgroup.orderOf_coe
sub_self
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors
sub_pow_char_of_commute
Commute.one_right
one_pow
pow_orderOf_eq_one
LT.lt.ne
Nat.Prime.one_lt
orderOf_one
LT.lt.ne'
Fintype.card_pos
One.instNonempty
card_image_polynomial_eval πŸ“–mathematicalWithBot
Preorder.toLT
WithBot.instPreorder
Nat.instPreorder
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
Polynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
Fintype.card
Polynomial.natDegree
Finset.card
Finset.image
Polynomial.eval
Finset.univ
β€”Finset.card_le_mul_card_image
Finset.filter.congr_simp
Polynomial.mem_roots_sub_C
Polynomial.eval_sub
Polynomial.eval_C
Multiset.toFinset_card_le
Polynomial.card_roots_sub_C'
cast_card_eq_zero πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Fintype.card
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”Nat.cast_card_eq_zero
coe_frobeniusAlgEquivOfAlgebraic πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
frobeniusAlgEquivOfAlgebraic
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Fintype.card
β€”β€”
coe_frobeniusAlgEquivOfAlgebraic_iterate πŸ“–mathematicalβ€”Nat.iterate
DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
frobeniusAlgEquivOfAlgebraic
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Nat.instMonoid
Fintype.card
β€”pow_iterate
coe_frobeniusAlgHom πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
AlgHom.funLike
frobeniusAlgHom
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Fintype.card
β€”β€”
even_card_iff_char_two πŸ“–mathematicalβ€”ringChar
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Fintype.card
β€”card
ringChar.charP
Nat.even_iff
Nat.even_pow
Nat.Prime.even_iff
even_card_of_char_two πŸ“–mathematicalringChar
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Fintype.cardβ€”even_card_iff_char_two
exists_nonsquare πŸ“–mathematicalβ€”IsSquare
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”Ring.neg_one_ne_one_of_char_ne_two
IsLocalRing.toNontrivial
Field.instIsLocalRing
mul_neg
mul_one
neg_neg
exists_root_sum_quadratic πŸ“–mathematicalPolynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
WithBot
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Nat.instAtLeastTwoHAddOfNat
Fintype.card
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial.eval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Nat.instAtLeastTwoHAddOfNat
lt_irrefl
Finset.card_le_univ
two_mul
add_lt_add_of_lt_of_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
lt_of_le_of_ne
card_image_polynomial_eval
Polynomial.natDegree_eq_of_degree_eq_some
Polynomial.degree_neg
Finset.card_union_of_disjoint
Polynomial.natDegree_neg
Polynomial.eval_neg
mul_add
Distrib.leftDistribClass
Mathlib.Tactic.Push.not_forall_eq
neg_add_cancel
expand_card πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.expand
Fintype.card
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”CharP.exists
card
expChar_prime
Polynomial.map_iterateFrobenius_expand
iterateFrobenius_eq_pow
frobenius_pow
RingHom.one_def
Polynomial.map_id
forall_pow_eq_one_iff πŸ“–mathematicalβ€”Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Monoid.toNatPow
Units.instMonoid
Units.instOne
Fintype.card
β€”IsCyclic.exists_generator
instIsCyclicUnitsOfFinite
instIsDomain
instFiniteUnits
Finite.of_fintype
Nat.card_eq_fintype_card
Nat.card_units
orderOf_eq_card_of_forall_mem_zpowers
orderOf_dvd_iff_pow_eq_one
pow_mul
mul_comm
one_pow
frobeniusAlgEquivOfAlgebraic_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
frobeniusAlgEquivOfAlgebraic
Monoid.toNatPow
CommMonoid.toMonoid
CommRing.toCommMonoid
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Fintype.card
β€”β€”
frobeniusAlgEquivOfAlgebraic_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
AlgEquiv.symm
frobeniusAlgEquivOfAlgebraic
Function.surjInv
AlgHom
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AlgHom.funLike
frobeniusAlgHom
Function.Bijective.surjective
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHomClass.toRingHom
Algebra.IsAlgebraic.algHom_bijective
β€”β€”
frobeniusAlgEquiv_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
AlgEquiv.instFunLike
frobeniusAlgEquiv
Monoid.toNatPow
CommMonoid.toMonoid
CommRing.toCommMonoid
Fintype.card
β€”β€”
frobeniusAlgEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
AlgEquiv.instFunLike
AlgEquiv.symm
frobeniusAlgEquiv
Function.surjInv
AlgHom
AlgHom.funLike
frobeniusAlgHom
Function.Bijective.surjective
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHomClass.toRingHom
β€”β€”
frobeniusAlgHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
AlgHom.funLike
frobeniusAlgHom
Monoid.toNatPow
CommMonoid.toMonoid
CommRing.toCommMonoid
Fintype.card
β€”β€”
frobenius_pow πŸ“–mathematicalFintype.card
Monoid.toNatPow
Nat.instMonoid
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
RingHom.instMonoid
frobenius
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
RingHom.instOne
β€”RingHom.ext
expChar_prime
RingHom.one_def
RingHom.id_apply
pow_card
pow_zero
pow_one
pow_succ'
pow_succ
pow_mul
RingHom.mul_def
RingHom.comp_apply
frobenius_def
instIsCyclicAlgEquivOfFinite πŸ“–mathematicalβ€”IsCyclic
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DivInvMonoid.toZPow
Group.toDivInvMonoid
AlgEquiv.aut
β€”Finite.of_injective
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Algebra.IsAlgebraic.of_finite
Module.IsNoetherian.finite
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
isNoetherian_of_finite
bijective_frobeniusAlgEquivOfAlgebraic_pow
isPrimePow_card πŸ“–mathematicalβ€”IsPrimePow
Nat.instCommMonoidWithZero
Fintype.card
β€”card'
Nat.prime_iff
Subtype.prop
isSquare_iff πŸ“–mathematicalβ€”IsSquare
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Fintype.card
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”MulZeroClass.mul_zero
unit_isSquare_iff
isSquare_of_char_two πŸ“–mathematicalringChar
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsSquare
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”ringChar.of_eq
isSquare_of_charTwo'
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
minpoly_frobeniusAlgHom πŸ“–mathematicalβ€”minpoly
LinearMap
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Module.End.instRing
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Module.End.instAlgebra
smulCommClass_self
CommRing.toCommMonoid
DistribMulAction.toMulAction
CommMonoid.toMonoid
AddCommMonoid.toAddMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Ring.toSemiring
CommRing.toRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AlgHom.toLinearMap
frobeniusAlgHom
Polynomial
Polynomial.instSub
Monoid.toNatPow
Polynomial.semiring
Polynomial.X
Module.finrank
Polynomial.instOne
β€”minpoly.eq_of_linearIndependent
smulCommClass_self
IsScalarTower.left
Polynomial.leadingCoeff_X_pow_sub_one
Module.finrank_pos
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.IsNoetherian.finite
isNoetherian_of_finite
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
LinearMap.ext
Polynomial.aeval_sub
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Polynomial.aeval_X
map_one
MonoidHomClass.toOneHomClass
Module.End.coe_pow
orderOf_frobeniusAlgHom
AlgHom.coe_pow
pow_orderOf_eq_one
Polynomial.degree_X_pow_sub_C
MonoidHom.instMonoidHomClass
LinearIndependent.comp
LinearIndependent.restrict_scalars'
Algebra.to_smulCommClass
LinearMap.instIsScalarTower
IsScalarTower.right
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
linearIndependent_algHom_toLinearMap
bijective_frobeniusAlgHom_pow
odd_card_of_char_ne_two πŸ“–mathematicalβ€”Fintype.cardβ€”even_card_iff_char_two
orderOf_frobeniusAlgEquivOfAlgebraic πŸ“–mathematicalβ€”orderOf
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
frobeniusAlgEquivOfAlgebraic
Algebra.IsAlgebraic.of_finite
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
DivisionRing.toRing
Field.toDivisionRing
Module.IsNoetherian.finite
CommSemiring.toSemiring
CommRing.toCommSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Algebra.toModule
Ring.toSemiring
isNoetherian_of_isNoetherianRing_of_finite
Ring.toAddCommGroup
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
AddCommGroup.toAddCommMonoid
isNoetherian_of_finite
Module.finrank
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.IsNoetherian.finite
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
isNoetherian_of_finite
orderOf_eq_iff
Module.finrank_pos
commRing_strongRankCondition
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
AlgEquiv.coe_pow
AlgHom.coe_pow
orderOf_frobeniusAlgHom
orderOf_frobeniusAlgHom πŸ“–mathematicalβ€”orderOf
AlgHom
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AlgHom.End
frobeniusAlgHom
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
β€”orderOf_eq_iff
Module.finrank_pos
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.IsNoetherian.finite
isNoetherian_of_finite
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
DFunLike.ext
AlgHom.coe_pow
pow_iterate
pow_card
Polynomial.card_le_degree_of_subset_roots
Polynomial.eval_sub
Polynomial.eval_pow
Polynomial.eval_X
DFunLike.congr_fun
Polynomial.coeff_sub
Polynomial.coeff_X_pow
LT.lt.ne
LT.lt.ne'
Fintype.one_lt_card
Polynomial.coeff_X_one
zero_sub
NeZero.one
sub_eq_zero
AlgHom.one_apply
coe_frobeniusAlgHom
LE.le.not_gt
LE.le.trans_lt
LE.le.trans_eq
Polynomial.natDegree_sub_le
Polynomial.natDegree_pow
IsDomain.to_noZeroDivisors
Polynomial.natDegree_X
mul_one
sup_of_le_left
Fintype.card_pos
Nontrivial.to_nonempty
LT.lt.trans_eq
Module.card_eq_pow_finrank
pow_card πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
Fintype.card
β€”zero_pow
Fintype.card_ne_zero
Nontrivial.to_nonempty
GroupWithZero.toNontrivial
Fintype.card_pos
pow_succ
pow_card_sub_one_eq_one
one_mul
pow_card_pow πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
Nat.instMonoid
Fintype.card
β€”pow_zero
pow_one
pow_succ
pow_mul
pow_card
pow_card_sub_one_eq_one πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
GroupWithZero.toMonoidWithZero
Fintype.card
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
GroupWithZero.toDivisionMonoid
β€”Units.val_pow_eq_pow_val
Units.val_mk0
Fintype.card_units
pow_card_eq_one
pow_dichotomy πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Fintype.card
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
β€”pow_card_sub_one_eq_one
mul_self_eq_one_iff
IsDomain.to_noZeroDivisors
instIsDomain
pow_two
pow_mul
mul_comm
Nat.two_mul_odd_div_two
odd_card_of_char_ne_two
prod_univ_units_id_eq_neg_one πŸ“–mathematicalβ€”Finset.prod
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
CommGroup.toCommMonoid
Units.instCommGroupUnits
CommRing.toCommMonoid
Finset.univ
Units.instNeg
NonUnitalNonAssocRing.toHasDistribNeg
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Units.instOne
β€”Finset.prod_involution
mul_inv_cancel
IsDomain.to_noZeroDivisors
inv_eq_iff_eq_inv
inv_neg
inv_one
inv_inv
Finset.insert_erase
Finset.mem_univ
Finset.prod_insert
Finset.notMem_erase
mul_one
roots_X_pow_card_sub_X πŸ“–mathematicalβ€”Polynomial.roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.instSub
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Fintype.card
Finset.val
Finset.univ
β€”X_pow_card_sub_X_ne_zero
Fintype.one_lt_card
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsDomain
Finset.eq_univ_iff_forall
Multiset.mem_toFinset
Polynomial.mem_roots
Polynomial.IsRoot.def
Polynomial.eval_sub
Polynomial.eval_pow
Polynomial.eval_X
sub_eq_zero
pow_card
Multiset.toFinset_val
Multiset.dedup_eq_self
Polynomial.nodup_roots
Polynomial.separable_def
Polynomial.derivative_sub
Polynomial.derivative_X
Polynomial.derivative_X_pow
Nat.cast_card_eq_zero
Polynomial.C_0
MulZeroClass.zero_mul
zero_sub
IsCoprime.neg_right
isCoprime_one_right
sum_pow_lt_card_sub_one πŸ“–mathematicalFintype.cardFinset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Finset.univ
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Finset.sum_congr
pow_zero
Finset.sum_const
nsmul_one
cast_card_eq_zero
Mathlib.Tactic.Contrapose.contrapose₃
Units.val_injective
Finset.ext
isUnit_iff_ne_zero
Finset.sum_sdiff
Finset.subset_univ
Finset.sum_singleton
zero_pow
add_zero
Finset.sum_map
sum_pow_units
sum_pow_units πŸ“–mathematicalβ€”Finset.sum
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Finset.univ
instFintypeUnitsOfDecidableEq
Monoid.toNatPow
Units.val
Fintype.card
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”one_pow
mul_pow
sum_hom_units
instIsDomain
forall_pow_eq_one_iff
DFunLike.ext_iff
Fintype.card_units
Nat.cast_sub
Fintype.card_pos_iff
cast_card_eq_zero
Nat.cast_one
zero_sub
Nat.cast_zero
sum_subgroup_pow_eq_zero πŸ“–mathematicalFintype.card
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Finset.univ
Monoid.toNatPow
Units.val
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Unique.instSubsingleton
NoZeroDivisors.to_isDomain
exists_pow_ne_one_of_isCyclic
subgroup_units_cyclic
Finite.of_fintype
Nat.card_eq_fintype_card
Finset.sum_eq_multiset_sum
Multiset.map_congr
Multiset.map_map
Multiset.map_univ_val_equiv
sub_mul
mul_comm
Multiset.sum_map_mul_right
one_mul
sub_self
mul_eq_zero
Units.ext
sub_eq_zero
sum_subgroup_units πŸ“–mathematicalβ€”Finset.sum
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finset.univ
Units.val
Bot.bot
Subgroup.instBot
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”SubmonoidClass.toOneMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
Finset.sum_congr
Finset.univ_unique
Finset.sum_singleton
Set.default_coe_singleton
sum_subgroup_units_eq_zero
sum_subgroup_units_eq_zero πŸ“–mathematicalβ€”Finset.sum
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Ring.toSemiring
Subgroup
Units.instGroup
SetLike.instMembership
Subgroup.instSetLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonAssocRing.toNonUnitalNonAssocRing
Ring.toNonAssocRing
Finset.univ
Units.val
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”Subgroup.ne_bot_iff_exists_ne_one
MulMemClass.isLeftCancelMul
SubmonoidClass.toMulMemClass
SubgroupClass.toSubmonoidClass
Subgroup.instSubgroupClass
LeftCancelSemigroup.toIsLeftCancelMul
Finset.univ_map_embedding
Finset.sum_map
mul_eq_zero
sub_mul
Finset.sum_congr
one_mul
sub_self
Mathlib.Tactic.Contrapose.contraposeβ‚„
Units.ext
sub_eq_zero
unit_isSquare_iff πŸ“–mathematicalβ€”IsSquare
Units
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Units.instMul
Monoid.toNatPow
Units.instMonoid
Fintype.card
Units.instOne
β€”IsCyclic.exists_generator
instIsCyclicUnitsOfFinite
instIsDomain
instFiniteUnits
Finite.of_fintype
mem_powers_iff_mem_zpowers
Nat.two_mul_odd_div_two
odd_card_of_char_ne_two
pow_two
pow_mul
Units.val_injective
pow_card_sub_one_eq_one
Units.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Nat.card_eq_fintype_card
Nat.card_units
orderOf_eq_card_of_forall_mem_zpowers
orderOf_dvd_of_pow_eq_one
Finite.one_lt_card
Nat.instAtLeastTwoHAddOfNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
mul_comm

Int

Theorems

NameKindAssumesProvesValidatesDepends On
prime_dvd_pow_self_sub πŸ“–mathematicalNat.PrimeMonoid.toNatPow
instMonoid
β€”ModEq.dvd
ModEq.symm
ModEq.pow_prime_eq_self
prime_dvd_pow_sub_one πŸ“–mathematicalNat.Prime
IsCoprime
instCommSemiring
Monoid.toNatPow
instMonoid
β€”ModEq.dvd
ModEq.symm
ModEq.pow_card_sub_one_eq_one

Int.ModEq

Theorems

NameKindAssumesProvesValidatesDepends On
pow_card_sub_one_eq_one πŸ“–mathematicalNat.Prime
IsCoprime
Int.instCommSemiring
Int.ModEq
Monoid.toNatPow
Int.instMonoid
β€”CharP.intCast_eq_zero_iff
ZMod.charP
Prime.coprime_iff_not_dvd
IsBezout.of_isPrincipalIdealRing
EuclideanDomain.to_principal_ideal_domain
Int.instIsDomain
Nat.prime_iff_prime_int
IsCoprime.symm
Int.cast_pow
Int.cast_one
ZMod.pow_card_sub_one_eq_one
pow_eq_pow πŸ“–mathematicalNat.PrimeInt.ModEq
Monoid.toNatPow
Int.instMonoid
β€”Mathlib.Tactic.GCongr.rel_imp_rel
instIsTrans
pow
symm
zero_pow
LT.lt.ne'
LT.lt.trans_le
refl
pow_sub_mul_pow
pow_mul
mul
pow_card_sub_one_eq_one
IsCoprime.symm
Prime.coprime_iff_not_dvd
IsBezout.of_isPrincipalIdealRing
EuclideanDomain.to_principal_ideal_domain
Int.instIsDomain
Nat.prime_iff_prime_int
Int.modEq_zero_iff_dvd
one_pow
one_mul
pow_prime_eq_self πŸ“–mathematicalNat.PrimeInt.ModEq
Monoid.toNatPow
Int.instMonoid
β€”Int.cast_pow
ZMod.pow_card

Nat

Theorems

NameKindAssumesProvesValidatesDepends On
pow_card_sub_one_sub_one_mod_card πŸ“–mathematicalPrimeMonoid.toNatPow
instMonoid
β€”ModEq.pow_card_sub_one_eq_one
sq_add_sq_modEq πŸ“–mathematicalβ€”ModEq
Monoid.toNatPow
instMonoid
β€”sq_add_sq_zmodEq
sq_add_sq_zmodEq πŸ“–mathematicalβ€”Int.ModEq
Monoid.toNatPow
Int.instMonoid
β€”ZMod.sq_add_sq
ZMod.natAbs_valMinAbs_le
NeZero.of_gt'
instCanonicallyOrderedAdd
Prime.one_lt'
Int.natCast_natAbs
sq_abs
ZMod.intCast_eq_intCast_iff
Int.cast_add
Int.cast_pow
ZMod.coe_valMinAbs

Nat.ModEq

Theorems

NameKindAssumesProvesValidatesDepends On
pow_card_sub_one_eq_one πŸ“–mathematicalNat.PrimeNat.ModEq
Monoid.toNatPow
Nat.instMonoid
β€”Int.natCast_modEq_iff
Nat.cast_pow
Nat.cast_one
Int.ModEq.pow_card_sub_one_eq_one
Nat.isCoprime_iff_coprime
pow_totient πŸ“–mathematicalβ€”Nat.ModEq
Monoid.toNatPow
Nat.instMonoid
Nat.totient
β€”ZMod.natCast_eq_natCast_iff
ZMod.pow_totient
Nat.cast_pow
Nat.cast_one

Subfield

Definitions

NameCategoryTheorems
fintypeBot πŸ“–CompOp
1 mathmath: roots_X_pow_char_sub_X_bot

Theorems

NameKindAssumesProvesValidatesDepends On
card_bot πŸ“–mathematicalβ€”Nat.card
Subfield
Field.toDivisionRing
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”dvd_rfl
ZMod.fieldRange_castHom_eq_bot
Nat.card_eq_of_bijective
RingHom.rangeRestrictField_bijective
Nat.card_zmod
mem_bot_iff_pow_eq_self πŸ“–mathematicalβ€”Subfield
Field.toDivisionRing
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”instIsDomain
Multiset.mem_map
Polynomial.Splits.roots_map
DivisionRing.isSimpleRing
splits_bot
roots_X_pow_char_sub_X_bot
Polynomial.roots.congr_simp
Polynomial.map_sub
Polynomial.map_pow
Polynomial.map_X
FiniteField.X_pow_card_sub_X_ne_zero
Nat.Prime.one_lt
Fact.out
Polynomial.eval_sub
Polynomial.eval_pow
Polynomial.eval_X
roots_X_pow_char_sub_X_bot πŸ“–mathematicalβ€”Polynomial.roots
Subfield
Field.toDivisionRing
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
instIsDomain
Field.toSemifield
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.instSub
instRingSubtypeMem
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
Finset.val
Finset.univ
fintypeBot
β€”instIsDomain
card_bot
Fintype.card_eq_nat_card
FiniteField.roots_X_pow_card_sub_X
splits_bot πŸ“–mathematicalβ€”Polynomial.Splits
Subfield
Field.toDivisionRing
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
Polynomial
Polynomial.instSub
instRingSubtypeMem
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.X
β€”instIsDomain
Polynomial.splits_iff_card_roots
roots_X_pow_char_sub_X_bot
Finset.card_def
Finset.card_univ
FiniteField.X_pow_card_sub_X_natDegree_eq
Nat.Prime.one_lt
Fact.out
Fintype.card_eq_nat_card
card_bot

ZMod

Theorems

NameKindAssumesProvesValidatesDepends On
card_units πŸ“–mathematicalβ€”Fintype.card
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
instFintypeUnitsOfDecidableEq
fintype
NeZero.of_gt'
AddMonoid.toAddZeroClass
Nat.instAddMonoid
Nat.instPreorder
Nat.instCanonicallyOrderedAdd
Nat.instOne
Nat.Prime.one_lt'
decidableEq
β€”NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
Fintype.card_units
card
eq_one_or_isUnit_sub_one πŸ“–mathematicalMonoid.toNatPow
Nat.instMonoid
orderOf
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
CommRing.toRing
IsUnit
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
β€”eq_or_ne
orderOf_eq_one_iff
isUnit_neg_one
zero_sub
natCast_zmod_surjective
orderOf_dvd_iff_pow_eq_one
Nat.cast_pow
Nat.cast_one
natCast_eq_natCast_iff
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Nat.cast_zero
not_imp_comm
Nat.Prime.coprime_pow_of_not_dvd
Fact.out
isUnit_iff_coprime
Nat.cast_sub
pow_pow_modEq_one
add_comm
tsub_eq_iff_eq_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
expand_card πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
ZMod
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
instField
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.expand
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
FiniteField.expand_card
card
fieldRange_castHom_eq_bot πŸ“–mathematicalβ€”RingHom.fieldRange
ZMod
Field.toDivisionRing
instField
castHom
dvd_rfl
Nat.instMonoid
DivisionRing.toRing
Bot.bot
Subfield
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Subfield.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”dvd_rfl
RingHom.fieldRange_eq_map
Subfield.map_bot
instSubsingletonSubfield
frobenius_zmod πŸ“–mathematicalβ€”frobenius
ZMod
Semifield.toCommSemiring
Field.toSemifield
instField
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
charP
RingHom.id
β€”RingHom.ext
expChar_prime
charP
frobenius_def
pow_card
RingHom.id_apply
instSubsingletonSubfield πŸ“–mathematicalβ€”Subfield
ZMod
Field.toDivisionRing
instField
β€”subsingleton_of_bot_eq_top
top_unique
zsmul_mem
SubringClass.addSubgroupClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
SubringClass.toSubsemiringClass
natCast_zmod_val
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
Nat.smul_one_eq_cast
natCast_zsmul
orderOf_dvd_card_sub_one πŸ“–mathematicalβ€”orderOf
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
β€”orderOf_dvd_of_pow_eq_one
pow_card_sub_one_eq_one
orderOf_units_dvd_card_sub_one πŸ“–mathematicalβ€”orderOf
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
Units.instMonoid
β€”orderOf_dvd_of_pow_eq_one
units_pow_card_sub_one_eq_one
pow_card πŸ“–mathematicalβ€”ZMod
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
β€”NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
FiniteField.pow_card
card
pow_card_pow πŸ“–mathematicalβ€”ZMod
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
Nat.instMonoid
β€”pow_zero
pow_one
pow_succ
pow_mul
pow_card
pow_card_sub_one πŸ“–mathematicalβ€”ZMod
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
decidableEq
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”pow_card_sub_one_eq_one
of_not_not
zero_pow
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
Nat.Prime.one_lt
Fact.out
pow_card_sub_one_eq_one πŸ“–mathematicalβ€”ZMod
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
FiniteField.pow_card_sub_one_eq_one
card
pow_totient πŸ“–mathematicalβ€”Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
commRing
Monoid.toNatPow
Units.instMonoid
Nat.totient
Units.instOne
β€”Nat.totient_zero
pow_zero
card_units_eq_totient
pow_card_eq_one
sq_add_sq πŸ“–mathematicalβ€”ZMod
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
commRing
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
β€”Nat.Prime.eq_two_or_odd
Fact.out
Fintype.complete
zero_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
zero_add
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
one_pow
FiniteField.exists_root_sum_quadratic
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
Polynomial.degree_X_pow
nontrivial
Polynomial.degree_X_pow_sub_C
card
sub_eq_zero
Polynomial.eval_pow
Polynomial.eval_X
Polynomial.eval_sub
Polynomial.eval_C
units_pow_card_sub_one_eq_one πŸ“–mathematicalβ€”Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
instField
Monoid.toNatPow
Units.instMonoid
Units.instOne
β€”NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
Nat.Prime.one_lt'
card_units
pow_card_eq_one

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
instFiniteZModUnits πŸ“–mathematicalβ€”Finite
Units
ZMod
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
ZMod.commRing
β€”Finite.of_fintype
instFiniteUnits
mem_bot_iff_intCast πŸ“–mathematicalβ€”Subfield
SetLike.instMembership
Subfield.instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Subfield.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
β€”dvd_rfl
ZMod.fieldRange_castHom_eq_bot
Function.Surjective.exists
ZMod.intCast_surjective
ZMod.cast_intCast
pow_pow_modEq_one πŸ“–mathematicalβ€”Nat.ModEq
Monoid.toNatPow
Nat.instMonoid
β€”Nat.modEq_one
Nat.modEq_iff_dvd'
Nat.one_le_pow'
add_comm
Nat.ModEq.comm
pow_succ
pow_mul
tsub_eq_iff_eq_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
add_pow
Finset.sum_range_succ'
pow_zero
one_mul
one_pow
Nat.choose_zero_right
Nat.cast_one
Nat.ModEq.add_right
Nat.modEq_zero_iff_dvd
Finset.sum_congr
mul_one
pow_succ'
mul_assoc
mul_dvd_mul_left
dvd_mul_of_dvd_right
Finset.dvd_sum
AddRightCancelSemigroup.toIsRightCancelAdd
pow_one
zero_add
Nat.choose_one_right

---

← Back to Index