📁 Source: Mathlib/FieldTheory/Finite/Trace.lean
algebraMap_norm_eq_pow_sum
algebraMap_norm_eq_prod_pow
algebraMap_trace_eq_sum_pow
trace_to_zmod_nondegenerate
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
MonoidHom
MulOneClass.toMulOne
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
MonoidHom.instFunLike
Algebra.norm
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Finset.sum
Nat.instAddCommMonoid
Finset.range
Module.finrank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Nat.instMonoid
Nat.card
Finset.prod_pow_eq_pow_sum
Finset.prod
CommRing.toCommMonoid
Finite.of_injective
FaithfulSMul.algebraMap_injective
Module.Free.instFaithfulSMulOfNontrivial
Module.Free.of_divisionRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
Module.IsNoetherian.finite
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
isNoetherian_of_finite
Module.Projective.of_free
Algebra.norm_eq_prod_automorphisms
GaloisField.instIsGaloisOfFinite
Finset.prod_range
Fintype.prod_bijective
Algebra.IsAlgebraic.of_finite
bijective_frobeniusAlgEquivOfAlgebraic_pow
AlgEquiv.coe_pow
coe_frobeniusAlgEquivOfAlgebraic_iterate
Fintype.card_eq_nat_card
LinearMap
RingHom.id
Semiring.toModule
LinearMap.instFunLike
Algebra.trace
trace_eq_sum_automorphisms
Finset.sum_range
Fintype.sum_bijective
CharP.char_is_prime
IsDomain.to_noZeroDivisors
instIsDomain
ringChar.charP
traceForm_nondegenerate
Algebra.IsAlgebraic.isSeparable_of_perfectField
Algebra.IsSeparable.isAlgebraic
ZMod.nontrivial
Nat.Prime.one_lt'
IsGalois.to_isSeparable
PerfectField.ofFinite
Finite.of_fintype
NeZero.of_gt'
Nat.instCanonicallyOrderedAdd
---
← Back to Index