Documentation Verification Report

Abelian

📁 Source: Mathlib/FieldTheory/Galois/Abelian.lean

Statistics

MetricCount
DefinitionsIsAbelianGalois
1
Theoremsof_algHom, of_isCyclic, toIsGalois, toIsMulCommutative, tower_bot, tower_top, instIsAbelianGalois, instIsAbelianGaloisSubtypeMemIntermediateField, instIsAbelianGaloisSubtypeMemIntermediateFieldBot, instIsAbelianGaloisSubtypeMemIntermediateField_1
10
Total11

IsAbelianGalois

Theorems

NameKindAssumesProvesValidatesDepends On
of_algHom 📖mathematicalIsAbelianGaloistower_bot
IsScalarTower.of_algebraMap_eq'
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.comp_algebraMap
of_isCyclic 📖mathematicalIsAbelianGaloisIsCyclic.commutative
toIsGalois 📖mathematicalIsGalois
toIsMulCommutative 📖mathematicalIsMulCommutative
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
tower_bot 📖mathematicalIsAbelianGaloisAlgEquiv.transfer_galois
RingHom.injective
DivisionRing.isSimpleRing
SubsemiringClass.nontrivial
Subalgebra.instSubsemiringClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
AlgHom.rangeRestrict_surjective
IsScalarTower.left
InfiniteGalois.normal_iff_isGalois
toIsGalois
Subgroup.normal_of_comm
toIsMulCommutative
IsGalois.to_normal
AlgEquiv.restrictNormalHom_surjective
map_mul
MonoidHomClass.toMulHomClass
MonoidHom.instMonoidHomClass
mul_comm
tower_top 📖mathematicalIsAbelianGaloisIsGalois.tower_top_of_isGalois
toIsGalois
AlgEquiv.restrictScalars_injective
mul_comm
toIsMulCommutative

(root)

Definitions

NameCategoryTheorems
IsAbelianGalois 📖CompData
9 mathmath: instIsAbelianGaloisSubtypeMemIntermediateFieldBot, instIsAbelianGalois, instIsAbelianGaloisSubtypeMemIntermediateField_1, IsCyclotomicExtension.isAbelianGalois, IsAbelianGalois.tower_top, IsAbelianGalois.of_algHom, IsAbelianGalois.tower_bot, instIsAbelianGaloisSubtypeMemIntermediateField, IsAbelianGalois.of_isCyclic

Theorems

NameKindAssumesProvesValidatesDepends On
instIsAbelianGalois 📖mathematicalIsAbelianGalois
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
IsGalois.self
AlgEquiv.subsingleton_right
Unique.instSubsingleton
instIsAbelianGaloisSubtypeMemIntermediateField 📖mathematicalIsAbelianGalois
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsAbelianGalois.tower_bot
IsScalarTower.left
IntermediateField.isScalarTower_mid'
instIsAbelianGaloisSubtypeMemIntermediateFieldBot 📖mathematicalIsAbelianGalois
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
IsAbelianGalois.of_algHom
IsScalarTower.left
instIsAbelianGalois
instIsAbelianGaloisSubtypeMemIntermediateField_1 📖mathematicalIsAbelianGalois
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
IsAbelianGalois.tower_top
IsScalarTower.left
IntermediateField.isScalarTower_mid'

---

← Back to Index