Documentation Verification Report

Basic

πŸ“ Source: Mathlib/FieldTheory/Galois/Basic.lean

Statistics

MetricCount
DefinitionsintermediateField, fixedField, algebra, smul, fixingSubgroup, fixingSubgroupEquiv, restrictRestrictAlgEquivMapHom, subgroupEquivAlgEquiv, IsGalois, galoisCoinsertionIntermediateFieldSubgroup, galoisInsertionIntermediateFieldSubgroup, intermediateFieldEquivSubgroup, normalAutEquivQuotient
13
Theoremstransfer_galois, isCyclic, isGalois, isMulCommutative_galoisGroup, mem_intermediateField_iff, finrank_fixedField_eq_card, isScalarTower, fixedField_antitone, fixedField_bot, fixedField_le, fixingSubgroup_antitone, fixingSubgroup_bot, fixingSubgroup_fixedField, fixingSubgroup_le, fixingSubgroup_sup, fixingSubgroup_top, le_iff_le, mem_fixedField_iff, mem_fixingSubgroup_iff, restrictNormalHom_ker, restrictRestrictAlgEquivMapHom_apply, restrictRestrictAlgEquivMapHom_injective, restrictRestrictAlgEquivMapHom_surjective, isGalois, card_aut_eq_finrank, card_aut_eq_finrank, card_fixingSubgroup_eq_finrank, finiteDimensional_of_finite, fixedField_fixingSubgroup, fixedField_top, fixingSubgroup_normal_of_isGalois, integral, intermediateFieldEquivSubgroup_apply, intermediateFieldEquivSubgroup_symm_apply, intermediateFieldEquivSubgroup_symm_apply_toDual, is_separable_splitting_field, map_fixingSubgroup, mem_bot_iff_fixed, mem_range_algebraMap_iff_fixed, normalAutEquivQuotient_apply, normalClosure, ofDual_intermediateFieldEquivSubgroup_apply, of_algEquiv, of_card_aut_eq_finrank, of_equiv_equiv, of_fixedField_eq_bot, of_fixedField_normal_subgroup, of_fixed_field, of_separable_splitting_field, of_separable_splitting_field_aux, self, separable, splits, sup_right, to_isSeparable, to_normal, tower_top_intermediateField, tower_top_of_isGalois, isGalois_bot, isGalois_iff, isGalois_iff_isGalois_bot, isGalois_iff_isGalois_top
62
Total75

AlgEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
transfer_galois πŸ“–mathematicalβ€”IsGaloisβ€”IsGalois.of_algEquiv

Algebra.IsQuadraticExtension

Theorems

NameKindAssumesProvesValidatesDepends On
isCyclic πŸ“–mathematicalβ€”IsCyclic
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DivInvMonoid.toZPow
Group.toDivInvMonoid
AlgEquiv.aut
β€”commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
Algebra.instFiniteOfIsQuadraticExtension
Module.Projective.of_free
toFree
AlgEquiv.card_le
finrank_eq_two
isCyclic_of_prime_card
Nat.fact_prime_two
le_antisymm
Mathlib.Tactic.IntervalCases.of_le_right
Nat.card_eq_fintype_card
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_ofNat
isCyclic_of_subsingleton
Finite.card_le_one_iff_subsingleton
Finite.algEquiv
Finite.algHom
instIsDomain
Eq.le
isGalois πŸ“–mathematicalβ€”IsGaloisβ€”commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
normal
isMulCommutative_galoisGroup πŸ“–mathematicalβ€”IsMulCommutative
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
β€”commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsCyclic.commutative
isCyclic

FixedPoints

Definitions

NameCategoryTheorems
intermediateField πŸ“–CompOp
12 mathmath: IsGaloisGroup.fixedPoints_top, IsGaloisGroup.fixedPoints_fixingSubgroup, IsGaloisGroup.le_fixedPoints_iff_le_fixingSubgroup, IsGaloisGroup.fixingSubgroup_fixedPoints, IsGaloisGroup.fixedPoints_bot, IsGaloisGroup.intermediateFieldEquivSubgroup_symm_apply, IsGaloisGroup.subgroup, IsGaloisGroup.fixedPoints_le_of_le, IsGaloisGroup.finrank_fixedPoints_eq_card_subgroup, mem_intermediateField_iff, IsGaloisGroup.intermediateFieldEquivSubgroup_symm_apply_toDual, IsGaloisGroup.fixedPoints_eq_bot

Theorems

NameKindAssumesProvesValidatesDepends On
mem_intermediateField_iff πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
intermediateField
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MulSemiringAction.toDistribMulAction
Ring.toSemiring
β€”β€”

IntermediateField

Definitions

NameCategoryTheorems
fixedField πŸ“–CompOp
20 mathmath: InfiniteGalois.normalAutEquivQuotient_apply, InfiniteGalois.fixingSubgroup_fixedField, fixingSubgroup_fixedField, mem_fixedField_iff, fixedField_antitone, InfiniteGalois.fixedField_fixingSubgroup, IsGalois.normalAutEquivQuotient_apply, IsGalois.intermediateFieldEquivSubgroup_symm_apply_toDual, InfiniteGalois.restrict_fixedField, IsGalois.fixedField_fixingSubgroup, IsGalois.intermediateFieldEquivSubgroup_symm_apply, IsGalois.fixedField_top, finrank_fixedField_eq_card, fixedField.isScalarTower, fixedField_le, le_iff_le, InfiniteGalois.fixedField_bot, fixedField_bot, IsGalois.tfae, IsGalois.of_fixedField_normal_subgroup
fixingSubgroup πŸ“–CompOp
33 mathmath: InfiniteGalois.normal_iff_isGalois, InfiniteGalois.isOpen_and_normal_iff_finite_and_isGalois, IsGalois.card_fixingSubgroup_eq_finrank, FiniteGaloisIntermediateField.mem_fixingSubgroup_iff, InfiniteGalois.krullTopology_mem_nhds_one_iff_of_isGalois, InfiniteGalois.fixingSubgroup_fixedField, fixingSubgroup_top, IsGalois.intermediateFieldEquivSubgroup_apply, map_fixingSubgroup, fixingSubgroup_fixedField, InfiniteGalois.fixedField_fixingSubgroup, InfiniteGalois.isOpen_mulEquivToLimit_image_fixingSubgroup, finrank_eq_fixingSubgroup_index, fixingSubgroup_le, fixingSubgroup_antitone, fixingSubgroup_isClosed, IsGalois.fixedField_fixingSubgroup, InfiniteGalois.isOpen_iff_finite, map_fixingSubgroup_index, fixedField.isScalarTower, krullTopology_mem_nhds_one_iff, krullTopology_mem_nhds_one_iff_of_normal, IsGalois.map_fixingSubgroup, fixingSubgroup_isOpen, le_iff_le, IsGalois.fixingSubgroup_normal_of_isGalois, restrictNormalHom_ker, fixingSubgroup_bot, mem_fixingSubgroup_iff, InfiniteGalois.fixingSubgroup_isClosed, fixingSubgroup_sup, IsGaloisGroup.map_mulEquivAlgEquiv_fixingSubgroup, IsGalois.ofDual_intermediateFieldEquivSubgroup_apply
fixingSubgroupEquiv πŸ“–CompOpβ€”
restrictRestrictAlgEquivMapHom πŸ“–CompOp
3 mathmath: restrictRestrictAlgEquivMapHom_apply, restrictRestrictAlgEquivMapHom_surjective, restrictRestrictAlgEquivMapHom_injective
subgroupEquivAlgEquiv πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
finrank_fixedField_eq_card πŸ“–mathematicalβ€”Module.finrank
IntermediateField
SetLike.instMembership
instSetLike
fixedField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
Nat.card
AlgEquiv
Semifield.toCommSemiring
Subgroup
AlgEquiv.aut
Subgroup.instSetLike
β€”Subgroup.instFiniteSubtypeMem
Finite.algEquiv
Finite.algHom
Module.Free.of_divisionRing
instIsDomain
Nat.card_eq_fintype_card
FixedPoints.finrank_eq_card
Subgroup.instFaithfulSMulSubtypeMem
AlgEquiv.apply_faithfulSMul
fixedField_antitone πŸ“–mathematicalβ€”Antitone
Subgroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
IntermediateField
PartialOrder.toPreorder
Subgroup.instPartialOrder
instPartialOrder
fixedField
β€”fixedField_le
fixedField_bot πŸ“–mathematicalβ€”fixedField
Bot.bot
Subgroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
Subgroup.instBot
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”ext
fixedField_le πŸ“–mathematicalSubgroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
IntermediateField
instPartialOrder
fixedField
β€”β€”
fixingSubgroup_antitone πŸ“–mathematicalβ€”Antitone
IntermediateField
Subgroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
PartialOrder.toPreorder
instPartialOrder
Subgroup.instPartialOrder
fixingSubgroup
β€”fixingSubgroup_le
fixingSubgroup_bot πŸ“–mathematicalβ€”fixingSubgroup
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Top.top
Subgroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
Subgroup.instTop
β€”Subgroup.ext
AlgEquiv.commutes
fixingSubgroup_fixedField πŸ“–mathematicalβ€”fixingSubgroup
fixedField
β€”le_iff_le
le_rfl
Nat.card_congr
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
Subgroup.instFiniteSubtypeMem
Finite.algEquiv
Finite.algHom
Module.Free.of_divisionRing
instIsDomain
Subgroup.instFaithfulSMulSubtypeMem
AlgEquiv.apply_faithfulSMul
finiteDimensional_right
instSubfieldClass
SetLike.coe_injective
Set.eq_of_inclusion_surjective
Nat.bijective_iff_injective_and_card
Subtype.finite
Set.inclusion_injective
fixingSubgroup_le πŸ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Subgroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
Subgroup.instPartialOrder
fixingSubgroup
β€”β€”
fixingSubgroup_sup πŸ“–mathematicalβ€”fixingSubgroup
IntermediateField
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subgroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
Subgroup.instMin
β€”Subgroup.ext
fixingSubgroup_antitone
le_sup_left
le_sup_right
fixingSubgroup_top πŸ“–mathematicalβ€”fixingSubgroup
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Bot.bot
Subgroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
Subgroup.instBot
β€”Subgroup.ext
le_iff_le πŸ“–mathematicalβ€”IntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
fixedField
Subgroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
Subgroup.instPartialOrder
fixingSubgroup
β€”Subtype.mem
mem_fixedField_iff πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
fixedField
DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
β€”β€”
mem_fixingSubgroup_iff πŸ“–mathematicalβ€”AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subgroup
AlgEquiv.aut
SetLike.instMembership
Subgroup.instSetLike
fixingSubgroup
DFunLike.coe
AlgEquiv.instFunLike
β€”mem_fixingSubgroup_iff
restrictNormalHom_ker πŸ“–mathematicalβ€”MonoidHom.ker
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.restrictNormalHom
instAlgebraSubtypeMem
isScalarTower_mid'
fixingSubgroup
β€”IsScalarTower.left
isScalarTower_mid'
AlgEquiv.restrictNormalHom_apply
restrictRestrictAlgEquivMapHom_apply πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
MonoidHom
instAlgebraSubtypeMem
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MonoidHom.instFunLike
restrictRestrictAlgEquivMapHom
isScalarTower_mid'
SubsemiringClass.toCommSemiring
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
instSubfieldClass
β€”IsScalarTower.left
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
isScalarTower_mid'
AlgEquiv.restrictNormalHom_apply
restrictRestrictAlgEquivMapHom_injective πŸ“–mathematicalIntermediateField
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
AlgEquiv
SetLike.instMembership
instSetLike
Semifield.toCommSemiring
Field.toSemifield
toField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instAlgebraSubtypeMem
Algebra.id
algebra'
Algebra.toSMul
CommSemiring.toSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MonoidHom.instFunLike
restrictRestrictAlgEquivMapHom
isScalarTower_mid'
β€”IsScalarTower.left
isScalarTower_mid'
injective_iff_map_eq_one
MonoidHom.instMonoidHomClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
AlgEquiv.apply_smulCommClass'
Subgroup.mem_bot
fixingSubgroup_top
fixingSubgroup_sup
restrictRestrictAlgEquivMapHom_apply
AlgEquiv.commutes
AlgEquiv.ext_iff
restrictRestrictAlgEquivMapHom_surjective πŸ“–mathematicalIntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
AlgEquiv
SetLike.instMembership
instSetLike
Semifield.toCommSemiring
Field.toSemifield
toField
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instAlgebraSubtypeMem
Algebra.id
algebra'
Algebra.toSMul
CommSemiring.toSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MonoidHom.instFunLike
restrictRestrictAlgEquivMapHom
isScalarTower_mid'
β€”IsScalarTower.left
isScalarTower_mid'
eq_bot_iff
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
mem_bot
IsGalois.mem_bot_iff_fixed
restrictRestrictAlgEquivMapHom_apply
mem_fixedField_iff
mem_inf
MonoidHom.range_eq_top
fixingSubgroup_bot
fixingSubgroup_fixedField

IntermediateField.fixedField

Definitions

NameCategoryTheorems
algebra πŸ“–CompOpβ€”
smul πŸ“–CompOp
1 mathmath: isScalarTower

Theorems

NameKindAssumesProvesValidatesDepends On
isScalarTower πŸ“–mathematicalβ€”IsScalarTower
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.fixedField
IntermediateField.fixingSubgroup
smul
IntermediateField.instSMulSubtypeMem
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
β€”mul_assoc

IsAlgClosure

Theorems

NameKindAssumesProvesValidatesDepends On
isGalois πŸ“–mathematicalβ€”IsGaloisβ€”instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
Algebra.IsAlgebraic.isSeparable_of_perfectField
isAlgebraic
PerfectField.ofCharZero
normal

IsGalois

Definitions

NameCategoryTheorems
galoisCoinsertionIntermediateFieldSubgroup πŸ“–CompOpβ€”
galoisInsertionIntermediateFieldSubgroup πŸ“–CompOpβ€”
intermediateFieldEquivSubgroup πŸ“–CompOp
4 mathmath: intermediateFieldEquivSubgroup_apply, intermediateFieldEquivSubgroup_symm_apply_toDual, intermediateFieldEquivSubgroup_symm_apply, ofDual_intermediateFieldEquivSubgroup_apply
normalAutEquivQuotient πŸ“–CompOp
1 mathmath: normalAutEquivQuotient_apply

Theorems

NameKindAssumesProvesValidatesDepends On
card_aut_eq_finrank πŸ“–mathematicalβ€”Nat.card
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Module.finrank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
β€”Field.exists_primitive_element
to_isSeparable
IsScalarTower.left
IntermediateField.mem_top
integral
separable
splits
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
AlgEquivClass.toRingEquivClass
AlgEquiv.instAlgEquivClass
Polynomial.map_map
Polynomial.Splits.map
LinearEquiv.finrank_eq
IntermediateField.AdjoinSimple.card_aut_eq_finrank
Nat.card_congr
card_fixingSubgroup_eq_finrank πŸ“–mathematicalβ€”Nat.card
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subgroup
AlgEquiv.aut
SetLike.instMembership
Subgroup.instSetLike
IntermediateField.fixingSubgroup
Module.finrank
IntermediateField
IntermediateField.instSetLike
IntermediateField.toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.instModuleSubtypeMem
Semiring.toModule
β€”fixedField_fixingSubgroup
IntermediateField.finrank_fixedField_eq_card
finiteDimensional_of_finite πŸ“–mathematicalβ€”FiniteDimensional
Field.toDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
Algebra.toModule
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”IsScalarTower.left
IntermediateField.exists_lt_finrank_of_infinite_dimensional
Algebra.IsSeparable.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
to_isSeparable
IntermediateField.isSeparable_tower_bot
normalClosure.normal
to_normal
Nat.card_le_card_of_surjective
IntermediateField.isScalarTower_mid'
AlgEquiv.restrictNormalHom_surjective
LT.lt.not_ge
LE.le.trans_lt
card_aut_eq_finrank
normalClosure.is_finiteDimensional
IntermediateField.finrank_le_of_le_right
IntermediateField.le_normalClosure
fixedField_fixingSubgroup πŸ“–mathematicalβ€”IntermediateField.fixedField
IntermediateField.fixingSubgroup
β€”IntermediateField.le_iff_le
le_rfl
IntermediateField.finrank_fixedField_eq_card
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
Nat.card_congr
card_aut_eq_finrank
IntermediateField.finiteDimensional_right
tower_top_intermediateField
IntermediateField.eq_of_le_of_finrank_eq'
fixedField_top πŸ“–mathematicalβ€”IntermediateField.fixedField
Top.top
Subgroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
Subgroup.instTop
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”IntermediateField.fixingSubgroup_bot
fixedField_fixingSubgroup
fixingSubgroup_normal_of_isGalois πŸ“–mathematicalβ€”Subgroup.Normal
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
IntermediateField.fixingSubgroup
β€”IsScalarTower.left
Subgroup.Normal.of_conjugate_fixed
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
map_fixingSubgroup
IntermediateField.normal_iff_forall_map_eq'
to_normal
integral πŸ“–mathematicalβ€”IsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
β€”Normal.isIntegral
to_normal
intermediateFieldEquivSubgroup_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
IntermediateField
OrderDual
Subgroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
OrderDual.instLE
Subgroup.instPartialOrder
RelIso.instFunLike
intermediateFieldEquivSubgroup
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
IntermediateField.fixingSubgroup
β€”β€”
intermediateFieldEquivSubgroup_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
OrderDual
Subgroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
IntermediateField
OrderDual.instLE
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
IntermediateField.instPartialOrder
instFunLikeOrderIso
OrderIso.symm
intermediateFieldEquivSubgroup
IntermediateField.fixedField
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”β€”
intermediateFieldEquivSubgroup_symm_apply_toDual πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
OrderDual
Subgroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
IntermediateField
OrderDual.instLE
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
IntermediateField.instPartialOrder
instFunLikeOrderIso
OrderIso.symm
intermediateFieldEquivSubgroup
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
IntermediateField.fixedField
β€”β€”
is_separable_splitting_field πŸ“–mathematicalβ€”Polynomial.Separable
Semifield.toCommSemiring
Field.toSemifield
Polynomial.IsSplittingField
β€”Field.exists_primitive_element
to_isSeparable
separable
splits
instIsDomain
eq_top_iff
IntermediateField.top_toSubalgebra
IntermediateField.adjoin_simple_toSubalgebra_of_isAlgebraic
IsIntegral.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
integral
Algebra.adjoin_mono
Set.singleton_subset_iff
Polynomial.mem_rootSet
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
minpoly.ne_zero
minpoly.aeval
map_fixingSubgroup πŸ“–mathematicalβ€”IntermediateField.fixingSubgroup
IntermediateField.map
AlgHomClass.toAlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv
AlgEquiv.instFunLike
AlgEquivClass.toAlgHomClass
AlgEquiv.instEquivLike
AlgEquiv.instAlgEquivClass
MulAut
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
Subgroup
SemigroupAction.toSMul
Monoid.toSemigroup
MulAut.instGroup
MulAction.toSemigroupAction
Subgroup.pointwiseMulAction
MulAut.applyMulDistribMulAction
DFunLike.coe
MonoidHom
MonoidHom.instFunLike
MulAut.conj
β€”Subgroup.ext
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
Set.image_congr
mem_bot_iff_fixed πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
β€”fixedField_top
IntermediateField.mem_fixedField_iff
mem_range_algebraMap_iff_fixed πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
AlgEquiv
AlgEquiv.instFunLike
β€”mem_bot_iff_fixed
normalAutEquivQuotient_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
HasQuotient.Quotient
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subgroup
AlgEquiv.aut
QuotientGroup.instHasQuotientSubgroup
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.fixedField
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
QuotientGroup.Quotient.group
EquivLike.toFunLike
MulEquiv.instEquivLike
normalAutEquivQuotient
MonoidHom
MonoidHom.instFunLike
AlgEquiv.restrictNormalHom
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
to_normal
of_fixedField_normal_subgroup
β€”IsScalarTower.left
normalClosure πŸ“–mathematicalβ€”IsGalois
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.normalClosure
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
Algebra.isSeparable_tower_bot_of_isSeparable
IsLocalRing.toNontrivial
Field.instIsLocalRing
IntermediateField.isScalarTower_mid'
to_isSeparable
normalClosure.normal
to_normal
ofDual_intermediateFieldEquivSubgroup_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
Subgroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderIso
IntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
OrderDual.instLE
Subgroup.instPartialOrder
instFunLikeOrderIso
intermediateFieldEquivSubgroup
IntermediateField.fixingSubgroup
β€”β€”
of_algEquiv πŸ“–mathematicalβ€”IsGaloisβ€”Algebra.IsSeparable.of_algHom
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
to_isSeparable
Normal.of_algEquiv
to_normal
of_card_aut_eq_finrank πŸ“–mathematicalNat.card
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Module.finrank
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
IsGaloisβ€”of_fixedField_eq_bot
Module.finrank_pos
commRing_strongRankCondition
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
IntermediateField.finiteDimensional_right
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IsScalarTower.left
IntermediateField.finrank_eq_one_iff
mul_left_inj'
IsCancelMulZero.toIsRightCancelMulZero
Nat.instIsCancelMulZero
ne_of_lt
Module.finrank_mul_finrank
IntermediateField.isScalarTower_mid'
Module.Free.of_divisionRing
one_mul
IntermediateField.finrank_fixedField_eq_card
Nat.card_congr
Subgroup.mem_top
of_equiv_equiv πŸ“–mathematicalRingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
algebraMap
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
IsGaloisβ€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
isGalois_iff
Algebra.IsSeparable.of_equiv_equiv
to_isSeparable
Normal.of_equiv_equiv
to_normal
of_fixedField_eq_bot πŸ“–mathematicalIntermediateField.fixedField
Top.top
Subgroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
Subgroup.instTop
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IsGaloisβ€”isGalois_iff_isGalois_bot
of_fixed_field
Subgroup.instFiniteSubtypeMem
Finite.algEquiv
Finite.algHom
Module.Free.of_divisionRing
instIsDomain
of_fixedField_normal_subgroup πŸ“–mathematicalβ€”IsGalois
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.fixedField
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
Algebra.isSeparable_tower_bot_of_isSeparable
IsLocalRing.toNontrivial
Field.instIsLocalRing
IntermediateField.isScalarTower_mid'
to_isSeparable
AlgEquivClass.toAlgHomClass
AlgEquiv.instAlgEquivClass
IntermediateField.normal_iff_forall_map_le'
to_normal
AlgEquiv.symm_apply_eq
Subgroup.Normal.conj_mem'
of_fixed_field πŸ“–mathematicalβ€”IsGalois
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
FixedPoints.subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subfield.toField
FixedPoints.instAlgebraSubtypeMemSubfieldSubfield
β€”FixedPoints.isSeparable
FixedPoints.normal
of_separable_splitting_field πŸ“–mathematicalPolynomial.Separable
Semifield.toCommSemiring
Field.toSemifield
IsGaloisβ€”instIsDomain
IntermediateField.toSubalgebra_injective
IntermediateField.top_toSubalgebra
top_le_iff
Polynomial.IsSplittingField.adjoin_rootSet
IntermediateField.algebra_adjoin_le_adjoin
IsScalarTower.left
IntermediateField.induction_on_adjoin_finset
IntermediateField.card_algHom_adjoin_integral
isIntegral_zero
Nat.card_congr
IntermediateField.adjoin_zero
IntermediateField.bot_toSubalgebra
Subalgebra.finrank_bot
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Polynomial.natDegree_X
minpoly.zero
IsSeparable.eq_1
Polynomial.separable_X
Polynomial.Splits.map
Polynomial.Splits.X
IntermediateField.isScalarTower_mid'
of_separable_splitting_field_aux
Polynomial.IsSplittingField.finiteDimensional
Multiset.mem_toFinset
Module.finrank_mul_finrank
IntermediateField.instIsScalarTowerSubtypeMem_1
IsScalarTower.right
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
Module.Free.of_divisionRing
LinearEquiv.finrank_eq
of_card_aut_eq_finrank
of_separable_splitting_field_aux πŸ“–mathematicalPolynomial.Separable
Semifield.toCommSemiring
Field.toSemifield
Multiset
Multiset.instMembership
Polynomial.aroots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Nat.card
AlgHom
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.restrictScalars
IntermediateField.adjoin
Set
Set.instSingletonSet
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
Module.finrank
IntermediateField.module'
β€”instIsDomain
IsIntegral.tower_top
isIntegral_of_noetherian
IsNoetherian.iff_fg
Multiset.notMem_zero
Polynomial.aroots_zero
minpoly.dvd
Polynomial.aeval_def
Polynomial.evalβ‚‚_map
Polynomial.eval_map
IsScalarTower.algebraMap_eq
Polynomial.mem_roots
Polynomial.map_ne_zero
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsScalarTower.left
AlgHomClass.toRingHomClass
AlgHom.algHomClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IntermediateField.isScalarTower
FiniteDimensional.left
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
isNoetherian_of_isNoetherianRing_of_finite
PrincipalIdealRing.isNoetherianRing
EuclideanDomain.to_principal_ideal_domain
Nat.card_congr
Nat.card_sigma
Finite.of_equiv
Finite.algHom
Module.Free.of_divisionRing
IntermediateField.finiteDimensional_left
Finite.of_injective
IntermediateField.adjoin.finrank
Nat.card_eq_fintype_card
Finset.sum_const_nat
IntermediateField.card_algHom_adjoin_integral
Polynomial.Separable.of_dvd
Polynomial.separable_map
Polynomial.Splits.of_dvd
Polynomial.IsSplittingField.splits
AlgHom.comp_algebraMap
Polynomial.map_map
RingHom.algebraMap_toAlgebra
Polynomial.map_dvd_map'
self πŸ“–mathematicalβ€”IsGalois
Algebra.id
Semifield.toCommSemiring
Field.toSemifield
β€”Algebra.isSeparable_self
normal_self
separable πŸ“–mathematicalβ€”IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
β€”Algebra.IsSeparable.isSeparable
to_isSeparable
splits πŸ“–mathematicalβ€”Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
β€”Normal.splits'
to_normal
sup_right πŸ“–mathematicalIntermediateField
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
CompleteLattice.toLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
IsGalois
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
β€”IsScalarTower.left
is_separable_splitting_field
instIsDomain
isSplittingField_iff_intermediateField
Polynomial.map_map
IsScalarTower.algebraMap_eq
IntermediateField.isScalarTower_mid'
Polynomial.Splits.of_algHom
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
SubsemiringClass.nontrivial
Polynomial.aeval_map_algebraMap
IntermediateField.restrictScalars_eq_top_iff
IntermediateField.restrictScalars_adjoin
IntermediateField.adjoin_union
IntermediateField.adjoin_self
Polynomial.Splits.image_rootSet
IntermediateField.coe_val
IntermediateField.lift_adjoin
IntermediateField.lift_top
sup_comm
of_separable_splitting_field
Polynomial.Separable.map
to_isSeparable πŸ“–mathematicalβ€”Algebra.IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
β€”β€”
to_normal πŸ“–mathematicalβ€”Normalβ€”β€”
tower_top_intermediateField πŸ“–mathematicalβ€”IsGalois
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
β€”tower_top_of_isGalois
IsScalarTower.left
IntermediateField.isScalarTower_mid'
tower_top_of_isGalois πŸ“–mathematicalβ€”IsGaloisβ€”Algebra.isSeparable_tower_top_of_isSeparable
to_isSeparable
Normal.tower_top_of_normal
to_normal

IsGalois.IntermediateField.AdjoinSimple

Theorems

NameKindAssumesProvesValidatesDepends On
card_aut_eq_finrank πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IsSeparable
Polynomial.Splits
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IntermediateField.toField
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
IntermediateField.algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
minpoly
Nat.card
AlgEquiv
Module.finrank
IntermediateField.module'
β€”IsScalarTower.left
IntermediateField.adjoin.finrank
IntermediateField.card_algHom_adjoin_integral
Nat.card_congr
IntermediateField.finiteDimensional_left

(root)

Definitions

NameCategoryTheorems
IsGalois πŸ“–CompData
35 mathmath: InfiniteGalois.normal_iff_isGalois, IsGaloisGroup.isGalois, IsGalois.tower_top_intermediateField, IsGalois.of_algEquiv, FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateField, InfiniteGalois.isOpen_and_normal_iff_finite_and_isGalois, FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldMax, isGalois_iff_isGalois_top, IsGalois.of_fixedField_eq_bot, IsAlgClosure.isGalois, IsGalois.normalClosure, IsGalois.self, IsGalois.of_card_aut_eq_finrank, IsGalois.sup_right, IsGalois.tower_top_of_isGalois, IsGalois.of_equiv_equiv, FiniteGaloisIntermediateField.isGalois, IsCyclotomicExtension.isGalois, AlgEquiv.transfer_galois, isGalois_iff, GaloisField.instIsGaloisOfFinite, isGalois_of_isSplittingField_X_pow_sub_C, IsSepClosure.isGalois, FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldMin, IsGalois.of_fixed_field, IsAbelianGalois.toIsGalois, IsGalois.tfae, Algebra.IsQuadraticExtension.isGalois, Ring.instIsGaloisFractionRingNormalClosure, isGalois_bot, isGalois_iff_isGalois_bot, separableClosure.isGalois, IsGalois.of_separable_splitting_field, IsGalois.of_fixedField_normal_subgroup, isCyclic_tfae

Theorems

NameKindAssumesProvesValidatesDepends On
isGalois_bot πŸ“–mathematicalβ€”IsGalois
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
AlgEquiv.transfer_galois
IsGalois.self
isGalois_iff πŸ“–mathematicalβ€”IsGalois
Algebra.IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Normal
β€”IsGalois.to_isSeparable
IsGalois.to_normal
isGalois_iff_isGalois_bot πŸ“–mathematicalβ€”IsGalois
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
IntermediateField.toField
IntermediateField.instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
β€”IsGalois.tower_top_of_isGalois
IntermediateField.isScalarTower_over_bot
IsGalois.tower_top_intermediateField
isGalois_iff_isGalois_top πŸ“–mathematicalβ€”IsGalois
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
IntermediateField.toField
IntermediateField.algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
β€”AlgEquiv.transfer_galois
IsScalarTower.left

---

← Back to Index