Documentation Verification Report

IsGaloisGroup

πŸ“ Source: Mathlib/FieldTheory/Galois/IsGaloisGroup.lean

Statistics

MetricCount
DefinitionsmulSemiringAction_of_isGaloisGroup, IsGaloisGroup, intermediateFieldEquivSubgroup, mulEquivAlgEquiv, mulEquivCongr
5
Theoremscard_eq_finrank, card_fixingSubgroup_eq_finrank, commutes, faithful, finite, finiteDimensional, finrank_fixedPoints_eq_card_subgroup, fixedPoints, fixedPoints_bot, fixedPoints_eq_bot, fixedPoints_fixingSubgroup, fixedPoints_le_of_le, fixedPoints_top, fixingSubgroup_bot, fixingSubgroup_fixedPoints, fixingSubgroup_le_of_le, fixingSubgroup_top, iff_isFractionRing, intermediateField, intermediateFieldEquivSubgroup_apply, intermediateFieldEquivSubgroup_symm_apply, intermediateFieldEquivSubgroup_symm_apply_toDual, isGalois, isInvariant, le_fixedPoints_iff_le_fixingSubgroup, map_mulEquivAlgEquiv_fixingSubgroup, mulEquivAlgEquiv_apply_apply, mulEquivAlgEquiv_apply_symm_apply, mulEquivAlgEquiv_symm_apply, mulEquivCongr_apply_smul, ofDual_intermediateFieldEquivSubgroup_apply, of_isFractionRing, of_isGalois, of_mulEquiv, of_mulEquiv_algEquiv, subgroup, toFractionRing, to_isFractionRing, instIsGaloisGroupIntRingOfIntegersOfRat, instIsGaloisGroupRingOfIntegersOfNumberField
40
Total45

FractionRing

Definitions

NameCategoryTheorems
mulSemiringAction_of_isGaloisGroup πŸ“–CompOp
1 mathmath: IsGaloisGroup.toFractionRing

IsGaloisGroup

Definitions

NameCategoryTheorems
intermediateFieldEquivSubgroup πŸ“–CompOp
4 mathmath: ofDual_intermediateFieldEquivSubgroup_apply, intermediateFieldEquivSubgroup_symm_apply, intermediateFieldEquivSubgroup_apply, intermediateFieldEquivSubgroup_symm_apply_toDual
mulEquivAlgEquiv πŸ“–CompOp
4 mathmath: mulEquivAlgEquiv_apply_symm_apply, mulEquivAlgEquiv_apply_apply, mulEquivAlgEquiv_symm_apply, map_mulEquivAlgEquiv_fixingSubgroup
mulEquivCongr πŸ“–CompOp
1 mathmath: mulEquivCongr_apply_smul

Theorems

NameKindAssumesProvesValidatesDepends On
card_eq_finrank πŸ“–mathematicalβ€”Nat.card
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”faithful
IntermediateField.finrank_bot'
commutes
fixedPoints_eq_bot
Nat.card_eq_fintype_card
FixedPoints.finrank_eq_card
Nat.card_eq_zero_of_infinite
Mathlib.Tactic.Contrapose.contrapose₁
FiniteDimensional.of_finrank_pos
Finite.of_injective
Finite.algEquiv
Finite.algHom
Module.free_of_finite_type_torsion_free'
EuclideanDomain.to_principal_ideal_domain
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
FaithfulSMul.eq_of_smul_eq_smul
DFunLike.ext_iff
card_fixingSubgroup_eq_finrank πŸ“–mathematicalβ€”Nat.card
Subgroup
SetLike.instMembership
Subgroup.instSetLike
fixingSubgroup
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulSemiringAction.toDistribMulAction
SetLike.coe
IntermediateField
IntermediateField.instSetLike
Module.finrank
IntermediateField.toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.instModuleSubtypeMem
Semiring.toModule
β€”card_eq_finrank
intermediateField
commutes πŸ“–mathematicalβ€”SMulCommClass
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulSemiringAction.toDistribMulAction
Algebra.toSMul
β€”β€”
faithful πŸ“–mathematicalβ€”FaithfulSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulSemiringAction.toDistribMulAction
β€”β€”
finite πŸ“–mathematicalβ€”Finiteβ€”Nat.finite_of_card_ne_zero
LT.lt.ne'
Module.finrank_pos
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
card_eq_finrank
finiteDimensional πŸ“–mathematicalβ€”FiniteDimensional
Field.toDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
Algebra.toModule
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”FiniteDimensional.of_finrank_pos
Nat.card_pos
One.instNonempty
card_eq_finrank
finrank_fixedPoints_eq_card_subgroup πŸ“–mathematicalβ€”Module.finrank
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
FixedPoints.intermediateField
Subgroup
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Subgroup.mulSemiringAction
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subgroup.smulCommClass_left
DistribMulAction.toMulAction
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulSemiringAction.toDistribMulAction
Algebra.toSMul
Semifield.toCommSemiring
commutes
IntermediateField.toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IntermediateField.instModuleSubtypeMem
Semiring.toModule
Nat.card
β€”Subgroup.smulCommClass_left
commutes
card_eq_finrank
subgroup
fixedPoints πŸ“–mathematicalβ€”IsGaloisGroup
Subfield
Field.toDivisionRing
SetLike.instMembership
Subfield.instSetLike
FixedPoints.subfield
DivInvMonoid.toMonoid
Group.toDivInvMonoid
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
SubfieldClass.toSubringClass
Subfield.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
FixedPoints.instAlgebraSubtypeMemSubfieldSubfield
β€”of_mulEquiv_algEquiv
IsGalois.of_fixed_field
fixedPoints_bot πŸ“–mathematicalβ€”FixedPoints.intermediateField
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Bot.bot
Subgroup.instBot
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Subgroup.mulSemiringAction
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subgroup.smulCommClass_left
DistribMulAction.toMulAction
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulSemiringAction.toDistribMulAction
Algebra.toSMul
Semifield.toCommSemiring
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Subgroup.smulCommClass_left
one_smul
fixedPoints_eq_bot πŸ“–mathematicalβ€”FixedPoints.intermediateField
DivInvMonoid.toMonoid
Group.toDivInvMonoid
commutes
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”commutes
eq_bot_iff
Algebra.IsInvariant.isInvariant
isInvariant
fixedPoints_fixingSubgroup πŸ“–mathematicalβ€”FixedPoints.intermediateField
Subgroup
SetLike.instMembership
Subgroup.instSetLike
fixingSubgroup
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulSemiringAction.toDistribMulAction
SetLike.coe
IntermediateField
IntermediateField.instSetLike
Subgroup.toGroup
Subgroup.mulSemiringAction
Subgroup.smulCommClass_left
Algebra.toSMul
Semifield.toCommSemiring
commutes
β€”Subgroup.smulCommClass_left
commutes
ofDual_intermediateFieldEquivSubgroup_apply
intermediateFieldEquivSubgroup_symm_apply
OrderIso.symm_apply_apply
fixedPoints_le_of_le πŸ“–mathematicalSubgroup
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
IntermediateField
IntermediateField.instPartialOrder
FixedPoints.intermediateField
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Subgroup.mulSemiringAction
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subgroup.smulCommClass_left
DistribMulAction.toMulAction
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulSemiringAction.toDistribMulAction
Algebra.toSMul
Semifield.toCommSemiring
β€”Subgroup.smulCommClass_left
fixedPoints_top πŸ“–mathematicalβ€”FixedPoints.intermediateField
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Top.top
Subgroup.instTop
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Subgroup.mulSemiringAction
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subgroup.smulCommClass_left
DistribMulAction.toMulAction
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulSemiringAction.toDistribMulAction
Algebra.toSMul
Semifield.toCommSemiring
commutes
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”Subgroup.smulCommClass_left
commutes
IntermediateField.ext
fixedPoints_eq_bot
fixingSubgroup_bot πŸ“–mathematicalβ€”fixingSubgroup
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulSemiringAction.toDistribMulAction
SetLike.coe
IntermediateField
IntermediateField.instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Top.top
Subgroup
Subgroup.instTop
β€”smul_algebraMap
fixingSubgroup_fixedPoints πŸ“–mathematicalβ€”fixingSubgroup
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulSemiringAction.toDistribMulAction
SetLike.coe
IntermediateField
IntermediateField.instSetLike
FixedPoints.intermediateField
Subgroup
SetLike.instMembership
Subgroup.instSetLike
Subgroup.toGroup
Subgroup.mulSemiringAction
Subgroup.smulCommClass_left
Algebra.toSMul
Semifield.toCommSemiring
commutes
β€”Subgroup.smulCommClass_left
commutes
intermediateFieldEquivSubgroup_symm_apply_toDual
ofDual_intermediateFieldEquivSubgroup_apply
OrderIso.apply_symm_apply
OrderDual.ofDual_toDual
fixingSubgroup_le_of_le πŸ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
Subgroup
Subgroup.instPartialOrder
fixingSubgroup
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulSemiringAction.toDistribMulAction
SetLike.coe
IntermediateField.instSetLike
β€”β€”
fixingSubgroup_top πŸ“–mathematicalβ€”fixingSubgroup
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulSemiringAction.toDistribMulAction
SetLike.coe
IntermediateField
IntermediateField.instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Bot.bot
Subgroup
Subgroup.instBot
β€”faithful
Subgroup.ext
MulAction.fixedBy_eq_univ_iff_eq_one
iff_isFractionRing πŸ“–mathematicalβ€”IsGaloisGroup
CommRing.toCommSemiring
CommSemiring.toSemiring
Algebra.IsIntegral
CommRing.toRing
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”Algebra.IsInvariant.isIntegral
isInvariant
to_isFractionRing
of_isFractionRing
intermediateField πŸ“–mathematicalβ€”IsGaloisGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
fixingSubgroup
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulSemiringAction.toDistribMulAction
SetLike.coe
IntermediateField
IntermediateField.instSetLike
Subgroup.toGroup
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IntermediateField.instAlgebraSubtypeMem
Algebra.id
Subgroup.mulSemiringAction
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
map_mulEquivAlgEquiv_fixingSubgroup
isGalois
of_mulEquiv_algEquiv
IsGalois.tower_top_intermediateField
intermediateFieldEquivSubgroup_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
IntermediateField
OrderDual
Subgroup
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
OrderDual.instLE
Subgroup.instPartialOrder
instFunLikeOrderIso
intermediateFieldEquivSubgroup
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
fixingSubgroup
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulSemiringAction.toDistribMulAction
SetLike.coe
IntermediateField.instSetLike
β€”β€”
intermediateFieldEquivSubgroup_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
OrderDual
Subgroup
IntermediateField
OrderDual.instLE
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
IntermediateField.instPartialOrder
instFunLikeOrderIso
OrderIso.symm
intermediateFieldEquivSubgroup
FixedPoints.intermediateField
SetLike.instMembership
Subgroup.instSetLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Subgroup.mulSemiringAction
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subgroup.smulCommClass_left
DistribMulAction.toMulAction
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulSemiringAction.toDistribMulAction
Algebra.toSMul
Semifield.toCommSemiring
commutes
β€”Subgroup.smulCommClass_left
commutes
Equiv.surjective
Function.Surjective.forall
MulEquiv.surjective
MulEquiv.symm_apply_apply
intermediateFieldEquivSubgroup_symm_apply_toDual πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
OrderDual
Subgroup
IntermediateField
OrderDual.instLE
Preorder.toLE
PartialOrder.toPreorder
Subgroup.instPartialOrder
IntermediateField.instPartialOrder
instFunLikeOrderIso
OrderIso.symm
intermediateFieldEquivSubgroup
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
FixedPoints.intermediateField
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Subgroup.mulSemiringAction
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subgroup.smulCommClass_left
DistribMulAction.toMulAction
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulSemiringAction.toDistribMulAction
Algebra.toSMul
Semifield.toCommSemiring
commutes
β€”intermediateFieldEquivSubgroup_symm_apply
isGalois πŸ“–mathematicalβ€”IsGaloisβ€”isGalois_iff_isGalois_bot
commutes
fixedPoints_eq_bot
IsGalois.of_fixed_field
isInvariant πŸ“–mathematicalβ€”Algebra.IsInvariantβ€”β€”
le_fixedPoints_iff_le_fixingSubgroup πŸ“–mathematicalβ€”IntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
FixedPoints.intermediateField
Subgroup
SetLike.instMembership
Subgroup.instSetLike
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Subgroup.mulSemiringAction
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subgroup.smulCommClass_left
DistribMulAction.toMulAction
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulSemiringAction.toDistribMulAction
Algebra.toSMul
Semifield.toCommSemiring
Subgroup.instPartialOrder
fixingSubgroup
SetLike.coe
IntermediateField.instSetLike
β€”Subgroup.smulCommClass_left
map_mulEquivAlgEquiv_fixingSubgroup πŸ“–mathematicalβ€”Subgroup.map
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
MonoidHomClass.toMonoidHom
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
mulEquivAlgEquiv
fixingSubgroup
DistribMulAction.toMulAction
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulSemiringAction.toDistribMulAction
SetLike.coe
IntermediateField
IntermediateField.instSetLike
IntermediateField.fixingSubgroup
β€”Subgroup.ext
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
MulEquiv.surjective
EquivLike.toEmbeddingLike
mulEquivAlgEquiv_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
EquivLike.toFunLike
MulEquiv.instEquivLike
mulEquivAlgEquiv
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MulSemiringAction.toDistribMulAction
β€”β€”
mulEquivAlgEquiv_apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
AlgEquiv.symm
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
EquivLike.toFunLike
MulEquiv.instEquivLike
mulEquivAlgEquiv
SemigroupAction.toSMul
Monoid.toSemigroup
MulAction.toSemigroupAction
DistribMulAction.toMulAction
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulSemiringAction.toDistribMulAction
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
β€”β€”
mulEquivAlgEquiv_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
MulEquiv
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
mulEquivAlgEquiv
Function.surjInv
MonoidHom
MonoidHom.instFunLike
MulSemiringAction.toAlgAut
Function.Bijective.surjective
β€”β€”
mulEquivCongr_apply_smul πŸ“–mathematicalβ€”SMulZeroClass.toSMul
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
Field.toSemifield
instSMulZeroClass
MulSemiringAction.toMulDistribMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
DivisionSemiring.toSemiring
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
MulEquiv.instEquivLike
mulEquivCongr
β€”AlgEquiv.ext_iff
MulEquiv.apply_symm_apply
ofDual_intermediateFieldEquivSubgroup_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
OrderDual
Subgroup
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
OrderIso
IntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
OrderDual.instLE
Subgroup.instPartialOrder
instFunLikeOrderIso
intermediateFieldEquivSubgroup
fixingSubgroup
DistribMulAction.toMulAction
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulSemiringAction.toDistribMulAction
SetLike.coe
IntermediateField.instSetLike
β€”β€”
of_isFractionRing πŸ“–mathematicalβ€”IsGaloisGroup
CommRing.toCommSemiring
CommSemiring.toSemiring
β€”faithful
FaithfulSMul.eq_of_smul_eq_smul
IsFractionRing.div_surjective
smul_divβ‚€'
IsFractionRing.injective
Algebra.smul_def
smul_mul'
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
algebraMap.coe_smul'
smul_algebraMap
commutes
Algebra.IsInvariant.isInvariant
isInvariant
IsFractionRing.instFaithfulSMul
IsIntegral.algebraMap
Algebra.IsIntegral.isIntegral
IsIntegrallyClosedIn.isIntegral_iff
IsIntegralClosure.of_isIntegrallyClosed
IsScalarTower.left
IsPurelyInseparable.isIntegral
isPurelyInseparable_self
isIntegral_algebraMap_iff
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
of_isGalois πŸ“–mathematicalβ€”IsGaloisGroup
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.aut
AlgEquiv.applyMulSemiringAction
β€”AlgEquiv.apply_faithfulSMul
AlgEquiv.apply_smulCommClass'
IsScalarTower.left
InfiniteGalois.mem_bot_iff_fixed
of_mulEquiv πŸ“–mathematicalSMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
DivInvMonoid.toMonoid
Group.toDivInvMonoid
MulSemiringAction.toDistribMulAction
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
EquivLike.toFunLike
MulEquiv.instEquivLike
IsGaloisGroupβ€”MulEquiv.injective
FaithfulSMul.eq_of_smul_eq_smul
faithful
SMulCommClass.smul_comm
commutes
MulEquiv.apply_symm_apply
Algebra.IsInvariant.isInvariant
isInvariant
of_mulEquiv_algEquiv πŸ“–mathematicalDFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
EquivLike.toFunLike
MulEquiv.instEquivLike
SMulZeroClass.toSMul
MulZeroClass.toZero
MulZeroOneClass.toMulZeroClass
MonoidWithZero.toMulZeroOneClass
GroupWithZero.toMonoidWithZero
DivisionSemiring.toGroupWithZero
instSMulZeroClass
MulSemiringAction.toMulDistribMulAction
IsGaloisGroupβ€”of_mulEquiv
of_isGalois
subgroup πŸ“–mathematicalβ€”IsGaloisGroup
Subgroup
SetLike.instMembership
Subgroup.instSetLike
IntermediateField
IntermediateField.instSetLike
FixedPoints.intermediateField
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Subgroup.mulSemiringAction
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Subgroup.smulCommClass_left
DistribMulAction.toMulAction
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
MulSemiringAction.toDistribMulAction
Algebra.toSMul
Semifield.toCommSemiring
commutes
SubsemiringClass.toCommSemiring
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IntermediateField.instAlgebraSubtypeMem
Algebra.id
β€”Subgroup.smulCommClass_left
commutes
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
faithful
Subgroup.instFaithfulSMulSubtypeMem
FixedPoints.instSMulCommClassSubtypeMemSubfieldSubfield
toFractionRing πŸ“–mathematicalβ€”IsGaloisGroup
FractionRing
OreLocalization.instCommSemiring
CommRing.toCommSemiring
nonZeroDivisors
Semiring.toMonoidWithZero
CommSemiring.toSemiring
OreLocalization.oreSetComm
CommRing.toCommMonoid
OreLocalization.instSemiring
FractionRing.liftAlgebra
FractionRing.field
OreLocalization.instAlgebra
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
CommRing.toRing
IsDomain.toIsCancelMulZero
IsDomain.toNontrivial
FractionRing.mulSemiringAction_of_isGaloisGroup
β€”IsDomain.toNontrivial
IsDomain.to_noZeroDivisors
IsScalarTower.right
Algebra.smul_def'
smul_mul'
IsFractionRing.fieldEquivOfAlgEquiv_algebraMap
Localization.isLocalization
OreLocalization.instIsScalarTower
FractionRing.instIsScalarTower
IsScalarTower.left
to_isFractionRing
FractionRing.instFaithfulSMul
Module.IsTorsionFree.to_faithfulSMul
IsDomain.toIsCancelMulZero
to_isFractionRing πŸ“–mathematicalβ€”IsGaloisGroup
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”faithful
FaithfulSMul.eq_of_smul_eq_smul
IsFractionRing.instFaithfulSMul
IsFractionRing.div_surjective
Algebra.smul_def
map_divβ‚€
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
smul_mul'
smul_divβ‚€'
smul_algebraMap
commutes
Algebra.IsInvariant.isIntegral
isInvariant
IsFractionRing.nontrivial_iff_nontrivial
IsLocalRing.toNontrivial
Field.instIsLocalRing
nonZeroDivisors.ne_zero
IsAlgebraic.exists_smul_eq_mul
Algebra.IsAlgebraic.isAlgebraic
Algebra.IsIntegral.isAlgebraic
div_eq_div_iff
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
mul_comm
Algebra.IsInvariant.isInvariant

(root)

Definitions

NameCategoryTheorems
IsGaloisGroup πŸ“–CompData
12 mathmath: IsGaloisGroup.iff_isFractionRing, IsGaloisGroup.of_mulEquiv, instIsGaloisGroupIntRingOfIntegersOfRat, IsGaloisGroup.of_isGalois, IsGaloisGroup.toFractionRing, IsGaloisGroup.of_mulEquiv_algEquiv, instIsGaloisGroupRingOfIntegersOfNumberField, IsGaloisGroup.intermediateField, IsGaloisGroup.of_isFractionRing, IsGaloisGroup.fixedPoints, IsGaloisGroup.to_isFractionRing, IsGaloisGroup.subgroup

Theorems

NameKindAssumesProvesValidatesDepends On
instIsGaloisGroupIntRingOfIntegersOfRat πŸ“–mathematicalβ€”IsGaloisGroup
NumberField.RingOfIntegers
Int.instCommSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
Ring.toIntAlgebra
CommRing.toRing
NumberField.RingOfIntegers.instMulSemiringAction
β€”NumberField.to_charZero
IsGaloisGroup.of_isFractionRing
Rat.isFractionRing
NumberField.RingOfIntegers.instIsFractionRing
AddCommGroup.intIsScalarTower
NumberField.RingOfIntegers.instSMulDistribClass
IsDedekindRing.toIsIntegralClosure
IsDedekindDomain.toIsDedekindRing
IsPrincipalIdealRing.isDedekindDomain
Int.instIsDomain
EuclideanDomain.to_principal_ideal_domain
NumberField.RingOfIntegers.instIsIntegralInt
instIsGaloisGroupRingOfIntegersOfNumberField πŸ“–mathematicalβ€”IsGaloisGroup
NumberField.RingOfIntegers
CommRing.toCommSemiring
NumberField.RingOfIntegers.instCommRing
CommSemiring.toSemiring
NumberField.inst_ringOfIntegersAlgebra
NumberField.RingOfIntegers.instMulSemiringAction
β€”IsGaloisGroup.of_isFractionRing
NumberField.RingOfIntegers.instIsFractionRing
NumberField.RingOfIntegers.instIsScalarTower
NumberField.RingOfIntegers.instIsScalarTower_1
NumberField.RingOfIntegers.instSMulDistribClass
NumberField.RingOfIntegers.instIsIntegrallyClosed
NumberField.RingOfIntegers.extension_algebra_isIntegral

---

← Back to Index