Documentation Verification Report

Profinite

📁 Source: Mathlib/FieldTheory/Galois/Profinite.lean

Statistics

MetricCount
DefinitionsfinGaloisGroup, algEquivToLimit, asProfiniteGaloisGroupFunctor, continuousMulEquivToLimit, limitToAlgEquiv, mulEquivToLimit, profiniteGalGrp, profiniteGalGrpIsoLimit, proj, finGaloisGroupFunctor, finGaloisGroupMap
11
TheoremsalgEquivToLimit_continuous, finGaloisGroupFunctor_map_proj_eq_proj, instCompactSpaceAlgEquivOfIsGalois, isOpen_mulEquivToLimit_image_fixingSubgroup, krullTopology_mem_nhds_one_iff_of_isGalois, limitToAlgEquiv_apply, limitToAlgEquiv_symm_apply, mk_toAlgEquivAux, mulEquivToLimit_symm_continuous, proj_adjoin_singleton_val, proj_of_le, restrictNormalHom_continuous, toAlgEquivAux_eq_liftNormal, toAlgEquivAux_eq_proj_of_mem, map_comp, map_id
16
Total27

FiniteGaloisIntermediateField

Definitions

NameCategoryTheorems
finGaloisGroup 📖CompOp
2 mathmath: finGaloisGroupMap.map_id, finGaloisGroupMap.map_comp

InfiniteGalois

Definitions

NameCategoryTheorems
algEquivToLimit 📖CompOp
1 mathmath: algEquivToLimit_continuous
asProfiniteGaloisGroupFunctor 📖CompOp
10 mathmath: toAlgEquivAux_eq_proj_of_mem, mulEquivToLimit_symm_continuous, isOpen_mulEquivToLimit_image_fixingSubgroup, proj_adjoin_singleton_val, toAlgEquivAux_eq_liftNormal, finGaloisGroupFunctor_map_proj_eq_proj, mk_toAlgEquivAux, proj_of_le, algEquivToLimit_continuous, limitToAlgEquiv_symm_apply
continuousMulEquivToLimit 📖CompOp
limitToAlgEquiv 📖CompOp
2 mathmath: limitToAlgEquiv_apply, limitToAlgEquiv_symm_apply
mulEquivToLimit 📖CompOp
2 mathmath: mulEquivToLimit_symm_continuous, isOpen_mulEquivToLimit_image_fixingSubgroup
profiniteGalGrp 📖CompOp
profiniteGalGrpIsoLimit 📖CompOp
proj 📖CompOp
6 mathmath: toAlgEquivAux_eq_proj_of_mem, proj_adjoin_singleton_val, toAlgEquivAux_eq_liftNormal, finGaloisGroupFunctor_map_proj_eq_proj, mk_toAlgEquivAux, proj_of_le

Theorems

NameKindAssumesProvesValidatesDepends On
algEquivToLimit_continuous 📖mathematicalContinuous
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
ProfiniteGrp.toProfinite
ProfiniteGrp.limit
Opposite
FiniteGaloisIntermediateField
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
FiniteGaloisIntermediateField.instPartialOrder
asProfiniteGaloisGroupFunctor
krullTopology
instTopologicalSpaceSubtype
Subgroup
Pi.group
CategoryTheory.Functor.obj
ProfiniteGrp
instCategoryProfiniteGrp
ProfiniteGrp.group
SetLike.instMembership
Subgroup.instSetLike
ProfiniteGrp.limitConePtAux
Pi.topologicalSpace
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
Subgroup.toGroup
MonoidHom.instFunLike
algEquivToLimit
continuous_induced_rng
continuous_pi
IsScalarTower.left
IntermediateField.isScalarTower_mid'
IsGalois.to_normal
FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateField
DiscreteTopology.eq_bot
krullTopology_discreteTopology_of_finiteDimensional
FiniteGaloisIntermediateField.instFiniteDimensionalSubtypeMemIntermediateField
restrictNormalHom_continuous
finGaloisGroupFunctor_map_proj_eq_proj 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Opposite
FiniteGaloisIntermediateField
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
FiniteGaloisIntermediateField.instPartialOrder
FiniteGrp
FiniteGrp.instCategory
finGaloisGroupFunctor
Opposite.op
CategoryTheory.ConcreteCategory.hom
MonoidHom
GrpCat.carrier
FiniteGrp.toGrp
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
GrpCat.str
MonoidHom.instFunLike
FiniteGrp.instConcreteCategoryMonoidHomCarrierToGrp
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
ProfiniteGrp.toProfinite
ProfiniteGrp.limit
asProfiniteGaloisGroupFunctor
AlgEquiv
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
FiniteGaloisIntermediateField.toIntermediateField
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
Subgroup.toGroup
Pi.group
ProfiniteGrp
instCategoryProfiniteGrp
ProfiniteGrp.group
ProfiniteGrp.limitConePtAux
AlgEquiv.aut
proj
Subtype.prop
instCompactSpaceAlgEquivOfIsGalois 📖mathematicalCompactSpace
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
krullTopology
Homeomorph.compactSpace
ProfiniteGrp.instCompactSpaceSubtypeForallCarrierToTopTotallyDisconnectedSpaceToProfiniteObjMemSubgroupLimitConePtAux
isOpen_mulEquivToLimit_image_fixingSubgroup 📖mathematicalIsOpen
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
ProfiniteGrp.toProfinite
ProfiniteGrp.limit
Opposite
FiniteGaloisIntermediateField
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
FiniteGaloisIntermediateField.instPartialOrder
asProfiniteGaloisGroupFunctor
instTopologicalSpaceSubtype
Subgroup
Pi.group
CategoryTheory.Functor.obj
ProfiniteGrp
instCategoryProfiniteGrp
ProfiniteGrp.group
SetLike.instMembership
Subgroup.instSetLike
ProfiniteGrp.limitConePtAux
Pi.topologicalSpace
Set.image
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DFunLike.coe
MulEquiv
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
Subgroup.mul
EquivLike.toFunLike
MulEquiv.instEquivLike
mulEquivToLimit
SetLike.coe
IntermediateField.fixingSubgroup
FiniteGaloisIntermediateField.toIntermediateField
Set.ext
MulEquiv.surjective
Set.image_congr
EquivLike.toEmbeddingLike
IsScalarTower.left
IntermediateField.isScalarTower_mid'
IsGalois.to_normal
FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateField
FiniteGaloisIntermediateField.mem_fixingSubgroup_iff
isOpen_induced
Continuous.isOpen_preimage
continuous_apply
krullTopology_mem_nhds_one_iff_of_isGalois 📖mathematicalSet
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Filter
Filter.instMembership
nhds
krullTopology
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
AlgEquiv.aut
Set.instHasSubset
SetLike.coe
Subgroup
Subgroup.instSetLike
IntermediateField.fixingSubgroup
FiniteGaloisIntermediateField.toIntermediateField
IsScalarTower.left
krullTopology_mem_nhds_one_iff_of_normal
IsGalois.to_normal
IntermediateField.isSeparable_tower_bot
IsGalois.to_isSeparable
FiniteGaloisIntermediateField.instFiniteDimensionalSubtypeMemIntermediateField
FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateField
limitToAlgEquiv_apply 📖mathematicalDFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
limitToAlgEquiv
limitToAlgEquiv_symm_apply 📖mathematicalDFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
AlgEquiv.symm
limitToAlgEquiv
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
ProfiniteGrp.toProfinite
ProfiniteGrp.limit
Opposite
FiniteGaloisIntermediateField
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
FiniteGaloisIntermediateField.instPartialOrder
asProfiniteGaloisGroupFunctor
Subgroup.inv
Pi.group
CategoryTheory.Functor.obj
ProfiniteGrp
instCategoryProfiniteGrp
ProfiniteGrp.group
ProfiniteGrp.limitConePtAux
mk_toAlgEquivAux 📖mathematicalIntermediateField
SetLike.instMembership
IntermediateField.instSetLike
FiniteGaloisIntermediateField.toIntermediateField
DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
MonoidHom
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
ProfiniteGrp.toProfinite
ProfiniteGrp.limit
Opposite
FiniteGaloisIntermediateField
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
FiniteGaloisIntermediateField.instPartialOrder
asProfiniteGaloisGroupFunctor
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Pi.group
CategoryTheory.Functor.obj
ProfiniteGrp
instCategoryProfiniteGrp
ProfiniteGrp.group
ProfiniteGrp.limitConePtAux
AlgEquiv.aut
MonoidHom.instFunLike
proj
IsScalarTower.left
toAlgEquivAux_eq_proj_of_mem
mulEquivToLimit_symm_continuous 📖mathematicalContinuous
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
ProfiniteGrp.toProfinite
ProfiniteGrp.limit
Opposite
FiniteGaloisIntermediateField
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
FiniteGaloisIntermediateField.instPartialOrder
asProfiniteGaloisGroupFunctor
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
instTopologicalSpaceSubtype
Subgroup
Pi.group
CategoryTheory.Functor.obj
ProfiniteGrp
instCategoryProfiniteGrp
ProfiniteGrp.group
SetLike.instMembership
Subgroup.instSetLike
ProfiniteGrp.limitConePtAux
Pi.topologicalSpace
krullTopology
DFunLike.coe
MulEquiv
Subgroup.mul
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
EquivLike.toFunLike
MulEquiv.instEquivLike
MulEquiv.symm
mulEquivToLimit
continuous_of_continuousAt_one
Subgroup.instIsTopologicalGroupSubtypeMem
Pi.topologicalGroup
ProfiniteGrp.topologicalGroup
IsTopologicalGroup.toContinuousMul
instIsTopologicalGroupAlgEquiv
MulEquivClass.instMonoidHomClass
MulEquiv.instMulEquivClass
continuousAt_def
map_one
MonoidHomClass.toOneHomClass
Equiv.image_eq_preimage_symm
Set.image_congr
mem_nhds_iff
isOpen_mulEquivToLimit_image_fixingSubgroup
EquivLike.toEmbeddingLike
Set.image_subset_iff
Set.image_mono
proj_adjoin_singleton_val 📖mathematicalIntermediateField
SetLike.instMembership
IntermediateField.instSetLike
FiniteGaloisIntermediateField.toIntermediateField
FiniteGaloisIntermediateField.adjoin
Set
Set.instSingletonSet
Finite.of_fintype
Set.Elem
Set.fintypeSingleton
DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
MonoidHom
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
ProfiniteGrp.toProfinite
ProfiniteGrp.limit
Opposite
FiniteGaloisIntermediateField
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
FiniteGaloisIntermediateField.instPartialOrder
asProfiniteGaloisGroupFunctor
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Pi.group
CategoryTheory.Functor.obj
ProfiniteGrp
instCategoryProfiniteGrp
ProfiniteGrp.group
ProfiniteGrp.limitConePtAux
AlgEquiv.aut
MonoidHom.instFunLike
proj
Preorder.toLE
FiniteGaloisIntermediateField.adjoin_simple_le_iff
Finite.of_fintype
proj_of_le
FiniteGaloisIntermediateField.adjoin_simple_le_iff
proj_of_le 📖mathematicalFiniteGaloisIntermediateField
Preorder.toLE
PartialOrder.toPreorder
FiniteGaloisIntermediateField.instPartialOrder
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
FiniteGaloisIntermediateField.toIntermediateField
DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
MonoidHom
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
ProfiniteGrp.toProfinite
ProfiniteGrp.limit
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
asProfiniteGaloisGroupFunctor
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Pi.group
CategoryTheory.Functor.obj
ProfiniteGrp
instCategoryProfiniteGrp
ProfiniteGrp.group
ProfiniteGrp.limitConePtAux
AlgEquiv.aut
MonoidHom.instFunLike
proj
IsScalarTower.left
finGaloisGroupFunctor_map_proj_eq_proj
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
IsScalarTower.of_algebraMap_eq
IsGalois.to_normal
AlgEquiv.restrictNormal_commutes
restrictNormalHom_continuous 📖mathematicalContinuous
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
krullTopology
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
AlgEquiv.aut
MonoidHom.instFunLike
AlgEquiv.restrictNormalHom
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
IsScalarTower.left
continuous_of_continuousAt_one
instIsTopologicalGroupAlgEquiv
IsTopologicalGroup.toContinuousMul
MonoidHom.instMonoidHomClass
IntermediateField.isScalarTower_mid'
continuousAt_def
krullTopology_mem_nhds_one_iff
map_one
MonoidHomClass.toOneHomClass
Module.Finite.equiv
IntermediateField.isScalarTower
mem_nhds_iff
AlgEquiv.restrictNormal_commutes
SetLike.coe_eq_coe
IntermediateField.mem_lift
IntermediateField.fixingSubgroup_isOpen
toAlgEquivAux_eq_liftNormal 📖mathematicalIntermediateField
SetLike.instMembership
IntermediateField.instSetLike
FiniteGaloisIntermediateField.toIntermediateField
DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv.instFunLike
AlgEquiv.liftNormal
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
MonoidHom
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
ProfiniteGrp.toProfinite
ProfiniteGrp.limit
Opposite
FiniteGaloisIntermediateField
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
FiniteGaloisIntermediateField.instPartialOrder
asProfiniteGaloisGroupFunctor
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Pi.group
CategoryTheory.Functor.obj
ProfiniteGrp
instCategoryProfiniteGrp
ProfiniteGrp.group
ProfiniteGrp.limitConePtAux
AlgEquiv.aut
MonoidHom.instFunLike
proj
IntermediateField.instAlgebraSubtypeMem
IntermediateField.isScalarTower_mid'
IsGalois.to_normal
IsScalarTower.left
IntermediateField.isScalarTower_mid'
IsGalois.to_normal
toAlgEquivAux_eq_proj_of_mem
AlgEquiv.liftNormal_commutes
toAlgEquivAux_eq_proj_of_mem 📖mathematicalIntermediateField
SetLike.instMembership
IntermediateField.instSetLike
FiniteGaloisIntermediateField.toIntermediateField
DFunLike.coe
AlgEquiv
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
MonoidHom
TopCat.carrier
CompHausLike.toTop
TotallyDisconnectedSpace
TopCat.str
ProfiniteGrp.toProfinite
ProfiniteGrp.limit
Opposite
FiniteGaloisIntermediateField
CategoryTheory.Category.opposite
Preorder.smallCategory
PartialOrder.toPreorder
FiniteGaloisIntermediateField.instPartialOrder
asProfiniteGaloisGroupFunctor
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
Subgroup.toGroup
Pi.group
CategoryTheory.Functor.obj
ProfiniteGrp
instCategoryProfiniteGrp
ProfiniteGrp.group
ProfiniteGrp.limitConePtAux
AlgEquiv.aut
MonoidHom.instFunLike
proj
proj_adjoin_singleton_val

(root)

Definitions

NameCategoryTheorems
finGaloisGroupFunctor 📖CompOp
1 mathmath: InfiniteGalois.finGaloisGroupFunctor_map_proj_eq_proj
finGaloisGroupMap 📖CompOp
2 mathmath: finGaloisGroupMap.map_id, finGaloisGroupMap.map_comp

finGaloisGroupMap

Theorems

NameKindAssumesProvesValidatesDepends On
map_comp 📖mathematicalfinGaloisGroupMap
CategoryTheory.CategoryStruct.comp
Opposite
FiniteGaloisIntermediateField
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Preorder.smallCategory
PartialOrder.toPreorder
FiniteGaloisIntermediateField.instPartialOrder
FiniteGrp
FiniteGrp.instCategory
FiniteGaloisIntermediateField.finGaloisGroup
Opposite.unop
IsScalarTower.left
LE.le.trans
IsScalarTower.of_algebraMap_eq'
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
CategoryTheory.ConcreteCategory.ext
IsScalarTower.AlgEquiv.restrictNormalHom_comp
IsGalois.to_normal
map_id 📖mathematicalfinGaloisGroupMap
CategoryTheory.CategoryStruct.id
Opposite
FiniteGaloisIntermediateField
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Preorder.smallCategory
PartialOrder.toPreorder
FiniteGaloisIntermediateField.instPartialOrder
FiniteGrp
FiniteGrp.instCategory
FiniteGaloisIntermediateField.finGaloisGroup
Opposite.unop
CategoryTheory.ConcreteCategory.ext
AlgEquiv.restrictNormalHom_id

---

← Back to Index