Basic
π Source: Mathlib/FieldTheory/IntermediateField/Adjoin/Basic.lean
Statistics
IntermediateField
Definitions
| Name | Category | Theorems |
|---|---|---|
adjoinRootEquivAdjoin π | CompOp | |
algHomAdjoinIntegralEquiv π | CompOp | |
fintypeOfAlgHomAdjoinIntegral π | CompOp | β |
powerBasisAux π | CompOp | β |
Theorems
IntermediateField.AdjoinPair
Definitions
| Name | Category | Theorems |
|---|---|---|
genβ π | CompOp | |
genβ π | CompOp |
Theorems
IntermediateField.FG
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
of_restrictScalars π | β | IntermediateField.FGIntermediateField.restrictScalars | β | β | le_antisymmIntermediateField.adjoin_le_iffLE.le.trans_eqIntermediateField.subset_adjoinIntermediateField.restrictScalars_le_iff |
IntermediateField.adjoin
Definitions
| Name | Category | Theorems |
|---|---|---|
powerBasis π | CompOp |
Theorems
Polynomial
Theorems
PowerBasis
Definitions
| Name | Category | Theorems |
|---|---|---|
equivAdjoinSimple π | CompOp |
Theorems
minpoly
Definitions
| Name | Category | Theorems |
|---|---|---|
algEquiv π | CompOp |
Theorems
---