Documentation Verification Report

Basic

πŸ“ Source: Mathlib/FieldTheory/IntermediateField/Adjoin/Basic.lean

Statistics

MetricCount
Definitionsgen₁, genβ‚‚, powerBasis, adjoinRootEquivAdjoin, algHomAdjoinIntegralEquiv, fintypeOfAlgHomAdjoinIntegral, powerBasisAux, equivAdjoinSimple, algEquiv
9
TheoremsalgebraMap_gen₁, algebraMap_genβ‚‚, of_restrictScalars, finiteDimensional, finrank, powerBasis_dim, powerBasis_gen, adjoinRootEquivAdjoin_apply_root, adjoinRootEquivAdjoin_symm_apply_gen, adjoin_eq_top_of_adjoin_eq_top, adjoin_finite_isCompactElement, adjoin_finset_isCompactElement, adjoin_minpoly_coeff_of_exists_primitive_element, adjoin_rank_le_of_isAlgebraic, adjoin_rank_le_of_isAlgebraic_left, adjoin_rank_le_of_isAlgebraic_right, adjoin_root_eq_top, adjoin_simple_isCompactElement, aeval_gen_minpoly, algHomAdjoinIntegralEquiv_symm_apply_gen, bot_eq_top_iff_finrank_eq_one, bot_eq_top_of_finrank_adjoin_eq_one, bot_eq_top_of_finrank_adjoin_le_one, bot_eq_top_of_rank_adjoin_eq_one, card_algHom_adjoin_integral, cardinalMk_adjoin_le, coe_iSup_of_directed, exists_finset_of_mem_adjoin, exists_finset_of_mem_iSup, exists_finset_of_mem_supr', exists_finset_of_mem_supr'', exists_lt_finrank_of_infinite_dimensional, finiteDimensional_adjoin, finiteDimensional_adjoin_pair, finiteDimensional_iSup_of_finite, finiteDimensional_iSup_of_finset, finiteDimensional_iSup_of_finset', finiteDimensional_sup, finrank_adjoin_eq_one_iff, finrank_adjoin_simple_eq_one_iff, finrank_bot, finrank_bot', finrank_eq_one_iff, finrank_eq_one_iff_eq_top, finrank_sup_le, finrank_top, finrank_top', forall_mem_adjoin_smul_eq_self_iff, instFiniteSubtypeMemBot, instIsCompactlyGenerated, isAlgebraic_adjoin, isAlgebraic_adjoin_pair, isAlgebraic_adjoin_simple, isAlgebraic_iSup, isSimpleOrder_of_finrank_prime, isSplittingField_iSup, lift_cardinalMk_adjoin_le, mem_adjoin_iff, mem_adjoin_pair_left, mem_adjoin_pair_right, mem_adjoin_range_iff, mem_adjoin_simple_iff, minpoly_gen, rank_adjoin_eq_one_iff, rank_adjoin_simple_eq_one_iff, rank_bot, rank_bot', rank_eq_one_iff, rank_sup_le_of_isAlgebraic, rank_top, rank_top', restrictScalars_le_iff, subsingleton_of_finrank_adjoin_eq_one, subsingleton_of_finrank_adjoin_le_one, subsingleton_of_rank_adjoin_eq_one, toSubalgebra_iSup_of_directed, irreducible_comp, equivAdjoinSimple_aeval, equivAdjoinSimple_gen, equivAdjoinSimple_symm_aeval, equivAdjoinSimple_symm_gen, algEquiv_apply, degree_dvd, degree_le, eq_of_root, natDegree_le
86
Total95

IntermediateField

Definitions

NameCategoryTheorems
adjoinRootEquivAdjoin πŸ“–CompOp
2 mathmath: adjoinRootEquivAdjoin_symm_apply_gen, adjoinRootEquivAdjoin_apply_root
algHomAdjoinIntegralEquiv πŸ“–CompOp
1 mathmath: algHomAdjoinIntegralEquiv_symm_apply_gen
fintypeOfAlgHomAdjoinIntegral πŸ“–CompOpβ€”
powerBasisAux πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
adjoinRootEquivAdjoin_apply_root πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
AlgEquiv
AdjoinRoot
minpoly
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot.instCommRing
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
AdjoinRoot.instAlgebra
Algebra.id
algebra'
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
adjoinRootEquivAdjoin
AdjoinRoot.root
AdjoinSimple.gen
β€”AdjoinRoot.lift_root
IsScalarTower.left
aeval_gen_minpoly
adjoinRootEquivAdjoin_symm_apply_gen πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
AlgEquiv
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
AdjoinRoot
minpoly
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
CommSemiring.toSemiring
CommRing.toCommSemiring
AdjoinRoot.instCommRing
algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
AdjoinRoot.instAlgebra
AlgEquiv.instFunLike
AlgEquiv.symm
adjoinRootEquivAdjoin
AdjoinSimple.gen
AdjoinRoot.root
β€”IsScalarTower.left
AlgEquiv.symm_apply_eq
adjoinRootEquivAdjoin_apply_root
adjoin_eq_top_of_adjoin_eq_top πŸ“–β€”adjoin
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”β€”restrictScalars_injective
restrictScalars_top
top_le_iff
adjoin_le_iff
coe_restrictScalars
le_refl
adjoin_finite_isCompactElement πŸ“–mathematicalβ€”IsCompactElement
IntermediateField
instPartialOrder
adjoin
β€”adjoin_finset_isCompactElement
Set.Finite.coe_toFinset
adjoin_finset_isCompactElement πŸ“–mathematicalβ€”IsCompactElement
IntermediateField
instPartialOrder
adjoin
SetLike.coe
Finset
Finset.instSetLike
β€”biSup_adjoin_simple
iSup_congr_Prop
CompleteLattice.isCompactElement_finsetSup
adjoin_simple_isCompactElement
adjoin_minpoly_coeff_of_exists_primitive_element πŸ“–mathematicaladjoin
Set
Set.instSingletonSet
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
SetLike.coe
Finset
Finset.instSetLike
Polynomial.coeffs
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
SetLike.instMembership
instSetLike
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
instSubfieldClass
algebraMap
instAlgebraSubtypeMem
Algebra.id
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
Ring.toSemiring
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
adjoin_le_iff
Finset.mem_coe
Polynomial.mem_coeffs_iff
Polynomial.coeff_map
Subtype.mem
subset_adjoin
minpoly.dvd
Polynomial.aeval_def
Polynomial.evalβ‚‚_eq_eval_map
Polynomial.map_toSubring
Polynomial.eval_map_algebraMap
minpoly.aeval
IsScalarTower.left
adjoin.finrank
IsIntegral.of_finite
finiteDimensional_right
finrank_top'
adjoin_eq_top_of_adjoin_eq_top
isScalarTower_mid'
eq_of_le_of_finrank_le'
Polynomial.natDegree_toSubring
Polynomial.natDegree_map
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.natDegree_le_of_dvd
SubsemiringClass.noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
Polynomial.Monic.ne_zero
Subring.instNontrivialSubtypeMem
Polynomial.monic_toSubring
Polynomial.Monic.map
minpoly.monic
adjoin_rank_le_of_isAlgebraic πŸ“–mathematicalAlgebra.IsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
Cardinal
Cardinal.instLE
Module.rank
adjoin
SetLike.coe
module'
β€”IsScalarTower.left
adjoin_intermediateField_toSubalgebra_of_isAlgebraic
Subalgebra.adjoin_rank_le
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
LinearEquiv.rank_eq
adjoin_rank_le_of_isAlgebraic_left πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Module.rank
IntermediateField
SetLike.instMembership
instSetLike
adjoin
SetLike.coe
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”adjoin_rank_le_of_isAlgebraic
IsScalarTower.left
adjoin_rank_le_of_isAlgebraic_right πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Module.rank
IntermediateField
SetLike.instMembership
instSetLike
adjoin
SetLike.coe
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”IsScalarTower.left
adjoin_rank_le_of_isAlgebraic
adjoin_root_eq_top πŸ“–mathematicalβ€”adjoin
AdjoinRoot
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AdjoinRoot.instField
AdjoinRoot.instAlgebra
Semifield.toCommSemiring
Field.toSemifield
Algebra.id
Set
Set.instSingletonSet
AdjoinRoot.root
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”eq_adjoin_of_eq_algebra_adjoin
AdjoinRoot.adjoinRoot_eq_top
adjoin_simple_isCompactElement πŸ“–mathematicalβ€”IsCompactElement
IntermediateField
instPartialOrder
adjoin
Set
Set.instSingletonSet
β€”sSup_eq_iSup'
Set.Nonempty.to_subtype
Set.mem_iUnion
coe_iSup_of_directed
DirectedOn.directed_val
SetLike.mem_coe
aeval_gen_minpoly πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
Polynomial.algebraOfAlgebra
Algebra.id
algebra'
Algebra.toSMul
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
AlgHom.funLike
Polynomial.aeval
AdjoinSimple.gen
minpoly
DivisionRing.toRing
Field.toDivisionRing
ZeroMemClass.zero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
AddSubmonoidClass.toZeroMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
SubsemiringClass.toAddSubmonoidClass
Semiring.toNonAssocSemiring
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
β€”IsScalarTower.left
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
AdjoinSimple.algebraMap_gen
Polynomial.aeval_algebraMap_apply
isScalarTower_mid'
minpoly.aeval
algHomAdjoinIntegralEquiv_symm_apply_gen πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
AlgHom
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
AlgHom.funLike
Equiv
Multiset
Multiset.instMembership
Polynomial.aroots
minpoly
instIsDomain
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
algHomAdjoinIntegralEquiv
AdjoinSimple.gen
β€”instIsDomain
PowerBasis.lift_gen
IsScalarTower.left
adjoin.powerBasis_gen
minpoly_gen
Polynomial.mem_aroots
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
bot_eq_top_iff_finrank_eq_one πŸ“–mathematicalβ€”Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
β€”finrank_bot'
finrank_eq_one_iff_eq_top
bot_eq_top_of_finrank_adjoin_eq_one πŸ“–mathematicalModule.finrank
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
β€”IsScalarTower.left
ext
mem_top
finrank_adjoin_simple_eq_one_iff
bot_eq_top_of_finrank_adjoin_le_one πŸ“–mathematicalModule.finrank
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
β€”IsScalarTower.left
bot_eq_top_of_finrank_adjoin_eq_one
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
IsStrictOrderedRing.toIsOrderedRing
Nat.cast_one
Nat.cast_zero
Module.finrank_pos
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
finiteDimensional_left
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
bot_eq_top_of_rank_adjoin_eq_one πŸ“–mathematicalModule.rank
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Cardinal
Cardinal.instOne
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Top.top
OrderTop.toTop
BoundedOrder.toOrderTop
β€”IsScalarTower.left
ext
mem_top
rank_adjoin_simple_eq_one_iff
card_algHom_adjoin_integral πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
IsSeparable
Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
Nat.card
AlgHom
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
toField
algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
Polynomial.natDegree
CommRing.toCommSemiring
β€”IsScalarTower.left
Nat.card_eq_fintype_card
instIsDomain
AlgHom.card_of_powerBasis
minpoly_gen
cardinalMk_adjoin_le πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
IntermediateField
SetLike.instMembership
instSetLike
adjoin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
Set.Elem
Cardinal.aleph0
β€”Cardinal.lift_id
lift_cardinalMk_adjoin_le
coe_iSup_of_directed πŸ“–mathematicalDirected
IntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.coe
instSetLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Set.iUnion
β€”Subalgebra.coe_iSup_of_directed
Set.mem_iUnion
inv_mem
le_antisymm
iSup_le
le_iSup
Set.iUnion_subset
exists_finset_of_mem_adjoin πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instHasSubset
SetLike.coe
Finset
Finset.instSetLike
β€”exists_finset_of_mem_iSup
biSup_adjoin_simple
Finset.coe_image
Subtype.coe_preimage_self
SetLike.le_def
instIsConcreteLE
subset_adjoin
exists_finset_of_mem_iSup πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Finset
Finset.instMembership
β€”CompleteLattice.IsCompactElement.exists_finset_of_le_iSup
adjoin_simple_isCompactElement
exists_finset_of_mem_supr' πŸ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Finset
Finset.instMembership
adjoin
Set
Set.instSingletonSet
β€”exists_finset_of_mem_iSup
SetLike.le_def
instIsConcreteLE
iSup_le
le_iSup_of_le
mem_adjoin_simple_self
exists_finset_of_mem_supr'' πŸ“–mathematicalAlgebra.IsAlgebraic
IntermediateField
SetLike.instMembership
instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Finset
Finset.instMembership
adjoin
Polynomial.rootSet
minpoly
instIsDomain
β€”IsScalarTower.left
exists_finset_of_mem_iSup
instIsDomain
SetLike.le_def
instIsConcreteLE
iSup_le
le_iSup_of_le
minpoly_eq
le_refl
subset_adjoin
Polynomial.mem_rootSet_of_ne
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
minpoly.ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
isIntegral_iff
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
minpoly.aeval
exists_lt_finrank_of_infinite_dimensional πŸ“–mathematicalFiniteDimensional
Field.toDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
Algebra.toModule
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField
SetLike.instMembership
instSetLike
toField
module'
DivisionRing.toDivisionSemiring
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Module.finrank
β€”IsScalarTower.left
Subalgebra.finite_bot
Module.finrank_pos
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
instFiniteSubtypeMemBot
instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
Mathlib.Tactic.Contrapose.contraposeβ‚‚
LinearEquiv.finiteDimensional
eq_top_iff
finiteDimensional_sup
adjoin.finiteDimensional
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
by_contra
eq_of_le_of_finrank_le
le_sup_left
LE.le.trans
not_lt
le_sup_right
mem_adjoin_simple_self
finiteDimensional_adjoin πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
FiniteDimensional
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Ring.toAddCommGroup
toField
module'
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
Semifield.toDivisionSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
β€”IsScalarTower.left
biSup_adjoin_simple
iSup_subtype''
finiteDimensional_iSup_of_finite
adjoin.finiteDimensional
finiteDimensional_adjoin_pair πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
FiniteDimensional
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instInsert
Set.instSingletonSet
Ring.toAddCommGroup
toField
module'
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
Semifield.toDivisionSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
β€”IsScalarTower.left
adjoin.finiteDimensional
Set.singleton_union
adjoin_union
finiteDimensional_sup
finiteDimensional_iSup_of_finite πŸ“–mathematicalFiniteDimensional
IntermediateField
SetLike.instMembership
instSetLike
Field.toDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
toField
module'
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
Semifield.toDivisionSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”IsScalarTower.left
iSup_univ
Set.Finite.induction_on
Set.finite_univ
iSup_emptyset
LinearEquiv.finiteDimensional
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.Free.self
iSup_insert
finiteDimensional_sup
finiteDimensional_iSup_of_finset πŸ“–mathematicalFiniteDimensional
IntermediateField
SetLike.instMembership
instSetLike
Field.toDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
toField
module'
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
Semifield.toDivisionSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Finset
Finset.instMembership
β€”IsScalarTower.left
finiteDimensional_iSup_of_finite
Finite.of_fintype
iSup_subtype''
finiteDimensional_iSup_of_finset' πŸ“–mathematicalFiniteDimensional
IntermediateField
SetLike.instMembership
instSetLike
Field.toDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
toField
module'
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
Semifield.toDivisionSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Finset
Finset.instMembership
β€”IsScalarTower.left
Subtype.forall'
finiteDimensional_iSup_of_finite
Finite.of_fintype
iSup_subtype''
finiteDimensional_sup πŸ“–mathematicalβ€”FiniteDimensional
IntermediateField
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Field.toDivisionRing
Ring.toAddCommGroup
DivisionRing.toRing
toField
module'
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
Semifield.toDivisionSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
β€”IsScalarTower.left
Algebra.TensorProduct.productMap_range
range_val
sup_toSubalgebra_of_left
LinearMap.finiteDimensional_range
Module.Finite.tensorProduct
finrank_adjoin_eq_one_iff πŸ“–mathematicalβ€”Module.finrank
IntermediateField
SetLike.instMembership
instSetLike
adjoin
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Set
Set.instHasSubset
SetLike.coe
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”IsScalarTower.left
finrank_eq_one_iff
adjoin_eq_bot_iff
finrank_adjoin_simple_eq_one_iff πŸ“–mathematicalβ€”Module.finrank
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”IsScalarTower.left
finrank_adjoin_eq_one_iff
Set.singleton_subset_iff
finrank_bot πŸ“–mathematicalβ€”Module.finrank
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”IsScalarTower.left
finrank_eq_one_iff
finrank_bot' πŸ“–mathematicalβ€”Module.finrank
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
Algebra.toModule
Semifield.toCommSemiring
β€”rank_bot'
finrank_eq_one_iff πŸ“–mathematicalβ€”Module.finrank
IntermediateField
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”IsScalarTower.left
finrank_eq_finrank_subalgebra
Subalgebra.finrank_eq_one_iff
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
bot_toSubalgebra
finrank_eq_one_iff_eq_top πŸ“–mathematicalβ€”Module.finrank
IntermediateField
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
β€”Subalgebra.bot_eq_top_iff_finrank_eq_one
commRing_strongRankCondition
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
top_le_iff
mem_top
finrank_top
finrank_sup_le πŸ“–mathematicalβ€”Module.finrank
IntermediateField
SetLike.instMembership
instSetLike
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”IsScalarTower.left
Subalgebra.finrank_sup_le_of_free
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
sup_toSubalgebra_of_left
LinearMap.rank_le_of_injective
Submodule.inclusion_injective
Cardinal.toNat_apply_of_aleph0_le
not_lt
Module.rank_lt_aleph0_iff
FiniteDimensional.eq_1
LE.le.trans
MulZeroClass.zero_mul
le_refl
finrank_top πŸ“–mathematicalβ€”Module.finrank
IntermediateField
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
β€”Module.rank_eq_one_iff_finrank_eq_one
rank_top
finrank_top' πŸ“–mathematicalβ€”Module.finrank
IntermediateField
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”finrank_top
forall_mem_adjoin_smul_eq_self_iff πŸ“–mathematicalβ€”SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MulSemiringAction.toDistribMulAction
Ring.toSemiring
β€”instIsConcreteLE
adjoin_le_iff
instFiniteSubtypeMemBot πŸ“–mathematicalβ€”Module.Finite
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”Subalgebra.finite_bot
instIsCompactlyGenerated πŸ“–mathematicalβ€”IsCompactlyGenerated
IntermediateField
instCompleteLattice
β€”adjoin_simple_isCompactElement
sSup_image
biSup_adjoin_simple
le_antisymm
adjoin_le_iff
le_rfl
subset_adjoin
isAlgebraic_adjoin πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Algebra.IsAlgebraic
IntermediateField
SetLike.instMembership
instSetLike
adjoin
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
biSup_adjoin_simple
iSup_subtype''
isAlgebraic_iSup
isAlgebraic_adjoin_simple
isAlgebraic_adjoin_pair πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Algebra.IsAlgebraic
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instInsert
Set.instSingletonSet
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
β€”isAlgebraic_adjoin
isAlgebraic_adjoin_simple πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Algebra.IsAlgebraic
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
β€”IsScalarTower.left
adjoin.finiteDimensional
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
isAlgebraic_iSup πŸ“–mathematicalAlgebra.IsAlgebraic
IntermediateField
SetLike.instMembership
instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
β€”IsScalarTower.left
exists_finset_of_mem_supr'
isAlgebraic_iff
IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
finiteDimensional_iSup_of_finset
adjoin.finiteDimensional
isIntegral_iff
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
isSimpleOrder_of_finrank_prime πŸ“–mathematicalNat.Prime
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
IsSimpleOrder
IntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
CompleteLattice.toBoundedOrder
instCompleteLattice
β€”Nat.prime_one_false
bot_eq_top_iff_finrank_eq_one
StrictMono.apply_eq_bot_iff
toSubalgebra_strictMono
StrictMono.apply_eq_top_iff
IsSimpleOrder.eq_bot_or_eq_top
Subalgebra.isSimpleOrder_of_finrank_prime
instIsDomain
isSplittingField_iSup πŸ“–mathematicalPolynomial.IsSplittingField
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Finset
Finset.instMembership
Finset.prod
Polynomial
CommRing.toCommMonoid
Polynomial.commRing
β€”IsScalarTower.left
le_iSup_of_le
le_iSup
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
instIsDomain
Polynomial.map_prod
Polynomial.Splits.prod
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Polynomial.map_map
AlgHom.comp_algebraMap_of_tower
isScalarTower
Polynomial.Splits.map
Polynomial.rootSet_prod
GaloisConnection.l_iSupβ‚‚
gc
iSup_congr
lift_cardinalMk_adjoin_le πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Cardinal.lift
IntermediateField
SetLike.instMembership
instSetLike
adjoin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
Set.Elem
Cardinal.aleph0
β€”adjoin_toSubfield
LE.le.trans
Cardinal.lift_le
Subfield.cardinalMk_closure_le_max
Cardinal.lift_max
sup_le_iff
Cardinal.lift_aleph0
Cardinal.mk_union_le
Cardinal.add_le_max
le_imp_le_of_le_of_le
sup_le_sup
Cardinal.mk_range_le_lift
le_refl
le_sup_right
mem_adjoin_iff πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
adjoin
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
DFunLike.coe
AlgHom
MvPolynomial
Set
Set.instMembership
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
β€”mem_adjoin_range_iff
Subtype.range_coe
mem_adjoin_pair_left πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instInsert
Set.instSingletonSet
β€”subset_adjoin
Set.mem_insert
mem_adjoin_pair_right πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instInsert
Set.instSingletonSet
β€”subset_adjoin
Set.mem_insert_of_mem
Set.mem_singleton
mem_adjoin_range_iff πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set.range
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
DFunLike.coe
AlgHom
MvPolynomial
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
MvPolynomial.commSemiring
MvPolynomial.algebra
Algebra.id
AlgHom.funLike
MvPolynomial.aeval
β€”Algebra.adjoin_range_eq_range_aeval
mem_adjoin_simple_iff πŸ“–mathematicalβ€”IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
β€”Algebra.adjoin_singleton_eq_range_aeval
minpoly_gen πŸ“–mathematicalβ€”minpoly
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
AdjoinSimple.gen
β€”IsScalarTower.left
minpoly.algebraMap_eq
isScalarTower_mid'
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
AdjoinSimple.algebraMap_gen
rank_adjoin_eq_one_iff πŸ“–mathematicalβ€”Module.rank
IntermediateField
SetLike.instMembership
instSetLike
adjoin
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Cardinal
Cardinal.instOne
Set
Set.instHasSubset
SetLike.coe
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”IsScalarTower.left
rank_eq_one_iff
adjoin_eq_bot_iff
rank_adjoin_simple_eq_one_iff πŸ“–mathematicalβ€”Module.rank
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Cardinal
Cardinal.instOne
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”IsScalarTower.left
rank_adjoin_eq_one_iff
Set.singleton_subset_iff
rank_bot πŸ“–mathematicalβ€”Module.rank
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Cardinal
Cardinal.instOne
β€”IsScalarTower.left
rank_eq_one_iff
rank_bot' πŸ“–mathematicalβ€”Module.rank
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
Algebra.toModule
Semifield.toCommSemiring
β€”IsScalarTower.left
rank_mul_rank
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
Module.Free.of_divisionRing
isScalarTower_mid'
rank_bot
one_mul
rank_eq_one_iff πŸ“–mathematicalβ€”Module.rank
IntermediateField
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Cardinal
Cardinal.instOne
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”IsScalarTower.left
rank_eq_rank_subalgebra
Subalgebra.rank_eq_one_iff
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
bot_toSubalgebra
rank_sup_le_of_isAlgebraic πŸ“–mathematicalAlgebra.IsAlgebraic
IntermediateField
SetLike.instMembership
instSetLike
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
toField
algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
Cardinal
Cardinal.instLE
Module.rank
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
module'
Cardinal.instMul
β€”IsScalarTower.left
Subalgebra.rank_sup_le_of_free
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
sup_toSubalgebra_of_isAlgebraic
rank_top πŸ“–mathematicalβ€”Module.rank
IntermediateField
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instModuleSubtypeMem
Semiring.toModule
Cardinal
Cardinal.instOne
β€”Subalgebra.bot_eq_top_iff_rank_eq_one
commRing_strongRankCondition
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.Free.of_divisionRing
top_le_iff
rank_top' πŸ“–mathematicalβ€”Module.rank
IntermediateField
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”rank_top
restrictScalars_le_iff πŸ“–mathematicalβ€”IntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
restrictScalars
β€”β€”
subsingleton_of_finrank_adjoin_eq_one πŸ“–β€”Module.finrank
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”β€”IsScalarTower.left
subsingleton_of_bot_eq_top
bot_eq_top_of_finrank_adjoin_eq_one
subsingleton_of_finrank_adjoin_le_one πŸ“–β€”Module.finrank
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
β€”β€”IsScalarTower.left
subsingleton_of_bot_eq_top
bot_eq_top_of_finrank_adjoin_le_one
subsingleton_of_rank_adjoin_eq_one πŸ“–β€”Module.rank
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
toField
module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Cardinal
Cardinal.instOne
β€”β€”IsScalarTower.left
subsingleton_of_bot_eq_top
bot_eq_top_of_rank_adjoin_eq_one
toSubalgebra_iSup_of_directed πŸ“–mathematicalDirected
IntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
toSubalgebra
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.instCompleteLatticeSubalgebra
β€”isEmpty_or_nonempty
iSup_of_empty
SetLike.ext'
coe_iSup_of_directed
Subalgebra.coe_iSup_of_directed

IntermediateField.AdjoinPair

Definitions

NameCategoryTheorems
gen₁ πŸ“–CompOp
1 mathmath: algebraMap_gen₁
genβ‚‚ πŸ“–CompOp
1 mathmath: algebraMap_genβ‚‚

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_gen₁ πŸ“–mathematicalβ€”DFunLike.coe
RingHom
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instInsert
Set.instSingletonSet
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
IntermediateField.instAlgebraSubtypeMem
Algebra.id
gen₁
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
algebraMap_genβ‚‚ πŸ“–mathematicalβ€”DFunLike.coe
RingHom
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instInsert
Set.instSingletonSet
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
IntermediateField.instAlgebraSubtypeMem
Algebra.id
genβ‚‚
β€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass

IntermediateField.FG

Theorems

NameKindAssumesProvesValidatesDepends On
of_restrictScalars πŸ“–β€”IntermediateField.FG
IntermediateField.restrictScalars
β€”β€”le_antisymm
IntermediateField.adjoin_le_iff
LE.le.trans_eq
IntermediateField.subset_adjoin
IntermediateField.restrictScalars_le_iff

IntermediateField.adjoin

Definitions

NameCategoryTheorems
powerBasis πŸ“–CompOp
2 mathmath: powerBasis_gen, powerBasis_dim

Theorems

NameKindAssumesProvesValidatesDepends On
finiteDimensional πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
FiniteDimensional
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
Ring.toAddCommGroup
IntermediateField.toField
IntermediateField.module'
DivisionSemiring.toSemiring
DivisionRing.toDivisionSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
Semifield.toDivisionSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
β€”PowerBasis.finite
IsScalarTower.left
finrank πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Module.finrank
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IntermediateField.toField
IntermediateField.module'
Algebra.toSMul
Semifield.toCommSemiring
CommSemiring.toSemiring
Algebra.id
Algebra.toModule
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
Module.toDistribMulAction
Polynomial.natDegree
CommRing.toCommSemiring
minpoly
β€”IsScalarTower.left
PowerBasis.finrank
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
powerBasis_dim πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
PowerBasis.dim
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
powerBasis
Polynomial.natDegree
minpoly
β€”IsScalarTower.left
powerBasis_gen πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
PowerBasis.gen
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
IntermediateField.toField
IntermediateField.algebra'
CommRing.toCommSemiring
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
powerBasis
IntermediateField.AdjoinSimple.gen
β€”IsScalarTower.left

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
irreducible_comp πŸ“–mathematicalMonic
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Irreducible
Polynomial
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
semiring
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
IntermediateField.toField
instSub
DivisionRing.toRing
Field.toDivisionRing
map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
IntermediateField.algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
C
IntermediateField.AdjoinSimple.gen
compβ€”IsScalarTower.left
not_irreducible_C
eq_C_of_natDegree_eq_zero
SubringClass.addSubgroupClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
AdjoinRoot.instIsScalarTower
IsScalarTower.right
RingHom.map_sub
coeff_map
map_C
AdjoinRoot.minpoly_root
Irreducible.ne_zero
inv_one
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
mul_one
natDegree_comp
IsDomain.to_noZeroDivisors
instIsDomain
IsStrictOrderedRing.noZeroDivisors
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
natDegree_eq_zero_of_isUnit
WfDvdMonoid.exists_irreducible_factor
UniqueFactorizationMonoid.toIsWellFounded
PrincipalIdealRing.to_uniqueFactorizationMonoid
instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
EuclideanDomain.to_principal_ideal_domain
minpoly.eq_of_irreducible_of_monic
IsLocalRing.toNontrivial
Field.instIsLocalRing
aeval_comp
aeval_eq_zero_of_dvd_aeval_eq_zero
AdjoinRoot.evalβ‚‚_root
IntermediateField.adjoin.finrank
IsIntegral.of_finite
PowerBasis.finite
IntermediateField.mem_adjoin_simple_self
AdjoinRoot.aeval_eq
aeval_sub
aeval_map_algebraMap
IntermediateField.isScalarTower_mid'
aeval_C
sub_self
Monic.sub_of_left
Monic.map
degree_lt_degree
natDegree_C
natDegree_map
DivisionRing.isSimpleRing
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
IntermediateField.restrictScalars_injective
IntermediateField.restrictScalars_top
IntermediateField.adjoin_adjoin_left
Set.union_comm
IntermediateField.adjoin_root_eq_top
IntermediateField.restrictScalars_adjoin
Set.union_singleton
Set.insert_eq_of_mem
IntermediateField.adjoin_univ
IntermediateField.finrank_top'
IntermediateField.finiteDimensional_right
natDegree_sub_C
Module.finrank_mul_finrank
commRing_strongRankCondition
Module.Free.of_divisionRing
AdjoinRoot.powerBasis_dim
PowerBasis.finrank
Associated.irreducible
associated_of_dvd_of_natDegree_le
Eq.ge

PowerBasis

Definitions

NameCategoryTheorems
equivAdjoinSimple πŸ“–CompOp
4 mathmath: equivAdjoinSimple_symm_aeval, equivAdjoinSimple_aeval, equivAdjoinSimple_gen, equivAdjoinSimple_symm_gen

Theorems

NameKindAssumesProvesValidatesDepends On
equivAdjoinSimple_aeval πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
gen
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
equivAdjoinSimple
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
AlgHom.funLike
Polynomial.aeval
IntermediateField.AdjoinSimple.gen
β€”equivOfMinpoly_aeval
equivAdjoinSimple_gen πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
gen
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
equivAdjoinSimple
IntermediateField.AdjoinSimple.gen
β€”equivOfMinpoly_gen
equivAdjoinSimple_symm_aeval πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
gen
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
AlgEquiv.symm
equivAdjoinSimple
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
AlgHom.funLike
Polynomial.aeval
IntermediateField.AdjoinSimple.gen
β€”IsScalarTower.left
equivAdjoinSimple.eq_1
equivOfMinpoly_symm
equivOfMinpoly_aeval
IntermediateField.adjoin.powerBasis_gen
equivAdjoinSimple_symm_gen πŸ“–mathematicalβ€”DFunLike.coe
AlgEquiv
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
gen
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
AlgEquiv.symm
equivAdjoinSimple
IntermediateField.AdjoinSimple.gen
β€”IsScalarTower.left
equivAdjoinSimple.eq_1
equivOfMinpoly_symm
equivOfMinpoly_gen
IntermediateField.adjoin.powerBasis_gen

minpoly

Definitions

NameCategoryTheorems
algEquiv πŸ“–CompOp
1 mathmath: algEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
algEquiv_apply πŸ“–mathematicalIsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
minpoly
DFunLike.coe
AlgEquiv
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
IntermediateField.toField
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
algEquiv
IntermediateField.AdjoinSimple.gen
β€”ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsAlgebraic.isIntegral
aeval
IsScalarTower.left
algEquiv.eq_1
AlgEquiv.trans_apply
IntermediateField.adjoinRootEquivAdjoin_apply_root
AlgEquiv.symm_apply_apply
AdjoinRoot.algEquivOfEq_root
degree_dvd πŸ“–mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Polynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
minpoly
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Semifield.toCommSemiring
β€”dvd_iff_exists_eq_mul_left
IsScalarTower.left
IntermediateField.adjoin.finrank
mul_comm
Module.finrank_mul_finrank
IntermediateField.isScalarTower_mid'
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing
SubsemiringClass.nontrivial
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
Module.Free.of_divisionRing
degree_le πŸ“–mathematicalβ€”WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
minpoly
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toNatCast
WithBot.addMonoidWithOne
Nat.instAddMonoidWithOne
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Semifield.toCommSemiring
β€”Polynomial.degree_le_of_natDegree_le
natDegree_le
eq_of_root πŸ“–β€”IsAlgebraic
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
minpoly
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
β€”β€”eq_iff_aeval_minpoly_eq_zero
instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
IsAlgebraic.isIntegral
natDegree_le πŸ“–mathematicalβ€”Polynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
EuclideanDomain.toCommRing
Field.toEuclideanDomain
minpoly
DivisionRing.toRing
Field.toDivisionRing
Module.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Algebra.toModule
Semifield.toCommSemiring
β€”IsScalarTower.left
IntermediateField.adjoin.finrank
IsIntegral.of_finite
Submodule.finrank_le
commRing_strongRankCondition
IsLocalRing.toNontrivial
Field.instIsLocalRing

---

← Back to Index