Documentation Verification Report

Defs

๐Ÿ“ Source: Mathlib/FieldTheory/IntermediateField/Adjoin/Defs.lean

Statistics

MetricCount
Definitionsgen, adjoinAlgebraMap, adjoin, fieldCoe, setCoe, algebraOverBot, botEquiv, delabAdjoinNotation, gi, instAlgebraSubtypeMemAdjoinSingletonSetCoeRingHomAlgebraMap, instAlgebraSubtypeMemMin, instAlgebraSubtypeMemMin_1, instCompleteLattice, instInhabited, instUnique, topEquiv, ยซterm_โŸฎ_,,โŸฏยป
17
TheoremsfieldRange_eq_top, fieldRange_eq_map, fieldRange_eq_top, map_fieldRange, algebraMap_gen, coe_gen, algebraMap_mem, mono, range_algebraMap_subset, adjoin_adjoin_comm, adjoin_adjoin_left, adjoin_algHom_ext, adjoin_contains_field_as_subfield, adjoin_empty, adjoin_eq_bot_iff, adjoin_eq_range_algebraMap_adjoin, adjoin_iUnion, adjoin_induction, adjoin_insert_adjoin, adjoin_intCast, adjoin_le_iff, adjoin_le_subfield, adjoin_map, adjoin_natCast, adjoin_one, adjoin_self, adjoin_simple_adjoin_simple, adjoin_simple_comm, adjoin_simple_eq_bot_iff, adjoin_simple_le_iff, adjoin_subset_adjoin_iff, adjoin_toSubfield, adjoin_union, adjoin_univ, adjoin_zero, algHom_ext_of_eq_adjoin, biSup_adjoin_simple, botEquiv_def, botEquiv_symm, bot_toSubalgebra, bot_toSubfield, coe_algebraMap_over_bot, coe_bot, coe_iInf, coe_inf, coe_sInf, coe_top, comap_map, extendScalars_adjoin, extendScalars_inf, extendScalars_self, extendScalars_sup, extendScalars_top, fg_adjoin_finset, fg_adjoin_of_finite, fg_bot, fg_def, fg_iSup, fg_sup, gc, iInf_toSubalgebra, iInf_toSubfield, iSup_eq_adjoin, iSup_toSubfield, induction_on_adjoin_fg, induction_on_adjoin_finset, inf_toSubalgebra, inf_toSubfield, instIsScalarTowerSubtypeMemAdjoinSingletonSetCoeRingHomAlgebraMap, isScalarTower_over_bot, lift_adjoin, lift_adjoin_simple, lift_bot, lift_inf, lift_sup, lift_top, map_bot, map_comap_eq, map_comap_eq_self, map_comap_eq_self_of_surjective, map_iInf, map_iSup, map_inf, map_sup, mem_adjoin_iff_div, mem_adjoin_of_mem, mem_adjoin_simple_self, mem_bot, mem_inf, mem_top, notMem_of_notMem_adjoin, restrictScalars_adjoin, restrictScalars_adjoin_eq_sup, restrictScalars_adjoin_of_algEquiv, restrictScalars_bot_eq_self, restrictScalars_eq_top_iff, restrictScalars_inf, restrictScalars_sup, restrictScalars_top, sInf_toSubalgebra, sInf_toSubfield, sSup_def, sSup_toSubfield, subset_adjoin, subset_adjoin_of_subset_left, subset_adjoin_of_subset_right, sup_def, sup_toSubfield, topEquiv_apply, topEquiv_symm_apply_coe, top_toSubalgebra, top_toSubfield, extendScalars_inf, extendScalars_self, extendScalars_sup, extendScalars_top
116
Total133

AlgEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
fieldRange_eq_top ๐Ÿ“–mathematicalโ€”AlgHom.fieldRange
AlgHomClass.toAlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgEquiv
instFunLike
AlgEquivClass.toAlgHomClass
instEquivLike
instAlgEquivClass
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
โ€”AlgEquivClass.toAlgHomClass
instAlgEquivClass
AlgHom.fieldRange_eq_top
surjective

AlgHom

Theorems

NameKindAssumesProvesValidatesDepends On
fieldRange_eq_map ๐Ÿ“–mathematicalโ€”fieldRange
IntermediateField.map
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
โ€”SetLike.ext'
Set.image_univ
fieldRange_eq_top ๐Ÿ“–mathematicalโ€”fieldRange
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
funLike
โ€”SetLike.ext'_iff
Set.range_eq_univ
map_fieldRange ๐Ÿ“–mathematicalโ€”IntermediateField.map
fieldRange
comp
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
โ€”SetLike.ext'
Set.range_comp

IntermediateField

Definitions

NameCategoryTheorems
adjoin ๐Ÿ“–CompOp
235 mathmath: AdjoinSimple.trace_gen_eq_sum_roots, aeval_gen_minpoly, adjoin_eq_top_iff_of_isAlgebraic, adjoin.finrank, adjoin_intermediateField_toSubalgebra_of_isAlgebraic, adjoin_eq_adjoin_pow_expChar_pow_of_isSeparable', minpoly.algEquiv_apply, adjoinRootEquivAdjoin_symm_apply_gen, isCyclotomicExtension_singleton_iff_eq_adjoin, Field.Emb.Cardinal.filtration_succ, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic_right, mem_adjoin_iff, Field.exists_primitive_element, adjoin_eq_adjoin_pow_expChar_of_isSeparable, adjoin_simple_isCompactElement, LinearDisjoint.adjoin_rank_eq_rank_left_of_isAlgebraic, adjoin.mono, Algebra.FormallySmooth.adjoin_of_algebraicIndependent, algebraAdjoinAdjoin.instIsAlgebraicSubtypeMemSubalgebraAdjoinAdjoin, adjoin_zero, PowerBasis.equivAdjoinSimple_symm_aeval, adjoin_univ, lift_adjoin_simple, AdjoinDouble.normal_algebraicClosure, mem_adjoin_simple_self, adjoin_eq_adjoin_pow_expChar_pow_of_isSeparable, isAlgebraic_adjoin_iff_top, adjoin_finite_isCompactElement, exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow', mem_adjoin_of_mem, subset_adjoin_of_subset_left, adjoin_le_iff, NumberField.mixedEmbedding.exists_primitive_element_lt_of_isComplex, IsNormalClosure.adjoin_rootSet, Field.Emb.Cardinal.two_le_deg, LinearDisjoint.rank_right_mul_adjoin_rank_eq_of_isAlgebraic, IsFractionRing.algHom_fieldRange_eq_of_comp_eq_of_range_eq, isAlgebraic_adjoin_iff, minpoly_gen, Field.Emb.Cardinal.isLeast_leastExt, normalClosure_eq_iSup_adjoin', Field.Emb.Cardinal.succEquiv_coherence, finSepDegree_adjoin_simple_eq_finrank_iff, fg_adjoin_finset, Field.primitive_element_iff_algHom_eq_of_eval', adjoin.powerBasis_gen, exists_finset_maximalFor_isTranscendenceBasis_separableClosure, adjoin_simple_adjoin_simple, adjoin_simple_toSubalgebra_of_integral, LinearDisjoint.rank_right_mul_adjoin_rank_eq_of_isAlgebraic_right, mem_adjoin_pair_right, AdjoinSimple.norm_gen_eq_one, restrictScalars_adjoin_of_algEquiv, adjoin_map, Field.Emb.Cardinal.instIsSeparableSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, IsFractionRing.algHom_fieldRange_eq_of_comp_eq, AlgebraicIndependent.lift_reprField, isAlgebraic_adjoin, sSup_def, IsTranscendenceBasis.isAlgebraic_field, PowerBasis.equivAdjoinSimple_aeval, Field.exists_primitive_element_of_finite_bot, Field.exists_primitive_element_of_finite_top, instIsScalarTowerSubtypeMemAdjoinSingletonSetCoeRingHomAlgebraMap, adjoin_simple_eq_top_iff_of_isAlgebraic, trace_eq_finrank_mul_minpoly_nextCoeff, rank_adjoin_eq_one_iff, adjoin_one, trace_eq_trace_adjoin, adjoin_root_eq_top, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_right, exists_finset_of_mem_supr'', adjoin_simple_eq_adjoin_pow_expChar_of_isSeparable, PowerBasis.equivAdjoinSimple_gen, restrictScalars_adjoin_eq_sup, mem_adjoin_iff_div, cardinalMk_adjoin_le, fg_def, PowerBasis.equivAdjoinSimple_symm_gen, exists_root_adjoin_eq_top_of_isCyclic, sepDegree_adjoin_eq_of_isAlgebraic_of_isPurelyInseparable', NumberField.is_primitive_element_of_infinitePlace_lt, IsFractionRing.liftAlgHom_fieldRange_eq_of_range_eq, finrank_adjoin_eq_one_iff, exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow_of_essFiniteType, subset_adjoin_of_subset_right, trace_eq_sum_roots, adjoin_simple_le_iff, Algebra.norm_eq_norm_adjoin, subset_adjoin, isAlgebraic_adjoin_iff_isAlgebraic, adjoin.range_algebraMap_subset, sepDegree_adjoin_eq_of_isAlgebraic_of_isPurelyInseparable, sup_def, isAlgebraic_adjoin_pair, adjoin_empty, adjoinRootEquivAdjoin_apply_root, adjoin_eq_algebra_adjoin, finSepDegree_adjoin_simple_eq_natSepDegree, isPurelyInseparable_adjoin_iff_pow_mem, separableClosure.adjoin_eq_of_isAlgebraic, adjoin.algebraMap_mem, LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic_right, finiteDimensional_adjoin, isTranscendenceBasis_adjoin_iff, adjoin_intermediateField_toSubalgebra_of_isAlgebraic_left, adjoin_eq_bot_iff, isSeparable_adjoin_simple_iff_isSeparable, AdjoinSimple.trace_gen_eq_zero, mem_adjoin_range_iff, finSepDegree_adjoin_simple_le_finrank, Field.exists_primitive_element_iff_finite_intermediateField, card_algHom_adjoin_integral, Field.Emb.Cardinal.filtration_apply, AdjoinPair.algebraMap_genโ‚, adjoin_simple_toSubalgebra_of_isAlgebraic, AlgebraicIndependent.liftAlgHom_comp_reprField, NumberField.mixedEmbedding.exists_primitive_element_lt_of_isReal, Field.Emb.Cardinal.deg_lt_aleph0, algHomAdjoinIntegralEquiv_symm_apply_gen, adjoin_simple_eq_bot_iff, iSup_eq_adjoin, adjoin_simple_eq_adjoin_pow_expChar_pow_of_isSeparable', exists_isTranscendenceBasis_and_isSeparable_of_perfectField, fg_adjoin_of_finite, adjoin_intCast, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic_left, Field.primitive_element_iff_minpoly_degree_eq, adjoin_toSubalgebra, adjoin_rank_le_of_isAlgebraic_right, LinearDisjoint.adjoin_rank_eq_rank_left_of_isAlgebraic_left, mem_adjoin_pair_left, algebraAdjoinAdjoin.instIsFractionRingSubtypeMemSubalgebraAdjoinAdjoin, adjoin_root_eq_top_of_isSplittingField, adjoin_iUnion, algebraicClosure.adjoin_le, adjoin_simple_eq_adjoin_pow_expChar_of_isSeparable', Field.primitive_element_iff_minpoly_natDegree_eq, AdjoinSimple.norm_gen_eq_prod_roots, Field.Emb.Cardinal.strictMono_filtration, LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic_left, isSplittingField_iff, FiniteGaloisIntermediateField.adjoin_val, adjoin_finset_isCompactElement, adjoin_eq_range_algebraMap_adjoin, isAlgebraic_adjoin_simple, exists_finset_of_mem_supr', AdjoinSimple.normal_algebraicClosure, exists_algHom_adjoin_of_splits', Algebra.normalizedTrace_def, adjoin_natCast, AdjoinSimple.isIntegral_gen, adjoin_rank_le_of_isAlgebraic, AlgebraicIndependent.aevalEquivField_apply_coe, adjoin_toSubalgebra_of_isAlgebraic_right, isSeparable_adjoin_pair_of_isSeparable, normalClosure_eq_iSup_adjoin, LinearDisjoint.rank_right_mul_adjoin_rank_eq_of_isAlgebraic_left, IsGalois.of_separable_splitting_field_aux, adjoin_le_subfield, adjoin_insert_adjoin, mem_adjoin_simple_iff, LinearDisjoint.lift_rank_right_mul_lift_adjoin_rank_eq_of_isAlgebraic, IsCyclotomicExtension.nonempty_algEquiv_adjoin_of_exists_isPrimitiveRoot, algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin, Field.Emb.Cardinal.iSup_adjoin_eq_top, lift_cardinalMk_adjoin_le, isCyclotomicExtension_adjoin_of_exists_isPrimitiveRoot, adjoin_toSubalgebra_of_isAlgebraic_left, Algebra.norm_eq_prod_roots, adjoin.finiteDimensional, adjoin_adjoin_comm, adjoin_eq_top_iff, adjoin_simple_comm, Field.Emb.Cardinal.adjoin_image_leastExt, LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic, adjoin_subset_adjoin_iff, Field.Emb.Cardinal.instFiniteDimensionalSubtypeMemIntermediateFieldAdjoinImageToTypeOrdRankCompCoeBasisWellOrderedBasisLeastExtIioSingletonSet, exists_isTranscendenceBasis_and_isSeparable_of_linearIndepOn_pow, adjoin_union, Field.exists_primitive_element_of_finite_intermediateField, lift_adjoin, adjoin_eq_top_of_algebra, algebraicIndependent_adjoin_iff, AlgebraicIndependent.aevalEquivField_algebraMap_apply_coe, adjoin_adjoin_left, IsFractionRing.liftAlgHom_fieldRange, adjoin_rank_le_of_isAlgebraic_left, algebraAdjoinAdjoin.instFaithfulSMulSubtypeMemSubalgebraAdjoinAdjoin, gc, isAlgebraic_adjoin_iff_bot, adjoin_simple_eq_adjoin_pow_expChar_pow_of_isSeparable, transcendental_adjoin_iff, adjoin_toSubalgebra_of_isAlgebraic, algebraAdjoinAdjoin.instIsScalarTowerSubtypeMemSubalgebraAdjoinAdjoin_1, adjoin_intermediateField_toSubalgebra_of_isAlgebraic_right, adjoin_toSubfield, LinearDisjoint.adjoin_rank_eq_rank_left_of_isAlgebraic_right, IsAdjoinRoot.primitive_element_root, instIsScalarTowerSubtypeMemSubalgebraAdjoinSingletonSetAdjoinCoeRingHomAlgebraMap, Field.Emb.Cardinal.adjoin_basis_eq_top, adjoin_eq_adjoin_pow_expChar_of_isSeparable', LinearDisjoint.lift_adjoin_rank_eq_lift_rank_right_of_isAlgebraic_left, IsPrimitiveRoot.intermediateField_adjoin_isCyclotomicExtension, adjoin_self, adjoin_algebraic_toSubalgebra, AdjoinSimple.coe_gen, isSplittingField_iff_intermediateField, eq_adjoin_of_eq_algebra_adjoin, FG.exists_finset_maximalFor_isTranscendenceBasis_separableClosure, Algebra.IsAlgebraic.normalClosure_eq_iSup_adjoin_of_splits, LinearDisjoint.adjoin_rank_eq_rank_right_of_isAlgebraic, finiteDimensional_adjoin_pair, isPurelyInseparable_adjoin_simple_iff_natSepDegree_eq_one, restrictScalars_adjoin, finrank_adjoin_simple_eq_one_iff, Field.primitive_element_iff_algHom_eq_of_eval, Algebra.IsAlgebraic.normalClosure_le_iSup_adjoin, trace_adjoinSimpleGen, rank_adjoin_simple_eq_one_iff, separableClosure.adjoin_eq_of_isAlgebraic_of_isSeparable, AdjoinPair.algebraMap_genโ‚‚, adjoin.powerBasis_dim, AdjoinSimple.algebraMap_gen, separableClosure.adjoin_le, algebra_adjoin_le_adjoin, isPurelyInseparable_adjoin_simple_iff_pow_mem, isCyclic_tfae, adjoin_rootSet_isSplittingField, nonempty_algHom_adjoin_of_splits, biSup_adjoin_simple, IsCyclotomicExtension.nonempty_algEquiv_adjoin_of_isSepClosed, isSeparable_adjoin_iff_isSeparable, Field.primitive_element_inf_aux, adjoin_contains_field_as_subfield
algebraOverBot ๐Ÿ“–CompOp
3 mathmath: coe_algebraMap_over_bot, botContinuousSMul, isScalarTower_over_bot
botEquiv ๐Ÿ“–CompOp
3 mathmath: coe_algebraMap_over_bot, botEquiv_symm, botEquiv_def
delabAdjoinNotation ๐Ÿ“–CompOpโ€”
gi ๐Ÿ“–CompOpโ€”
instAlgebraSubtypeMemAdjoinSingletonSetCoeRingHomAlgebraMap ๐Ÿ“–CompOp
1 mathmath: instIsScalarTowerSubtypeMemAdjoinSingletonSetCoeRingHomAlgebraMap
instAlgebraSubtypeMemMin ๐Ÿ“–CompOpโ€”
instAlgebraSubtypeMemMin_1 ๐Ÿ“–CompOpโ€”
instCompleteLattice ๐Ÿ“–CompOp
242 mathmath: finInsepDegree_top, adjoin_eq_top_iff_of_isAlgebraic, LinearDisjoint.iff_inf_eq_bot, normal_inf, sSup_toSubfield, extendScalars_sup, coe_algebraMap_over_bot, relrank_comap_comap_eq_relrank_inf, isPurelyInseparable_iSup, coe_bot, lift_insepDegree_bot', algebraicClosure.algebraicClosure_eq_bot, coe_iSup_of_directed, IsGaloisGroup.fixingSubgroup_top, FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldMax, IsGaloisGroup.fixedPoints_top, botEquiv_symm, AlgHom.fieldRange_eq_map, relfinrank_bot_right, Field.exists_primitive_element, isGalois_iff_isGalois_top, FiniteGaloisIntermediateField.instFiniteDimensionalSubtypeMemIntermediateFieldMin_1, InfiniteGalois.mem_bot_iff_fixed, adjoin_zero, coe_iInf, adjoin_univ, inf_toSubalgebra, finiteDimensional_iSup_of_finset, NumberField.mixedEmbedding.exists_primitive_element_lt_of_isComplex, IsNormalClosure.adjoin_rootSet, instIsAbelianGaloisSubtypeMemIntermediateFieldBot, inf_relrank_right, normalClosure_eq_iSup_adjoin', iInf_toSubfield, fixingSubgroup_top, bot_toSubalgebra, sup_toSubalgebra_of_isAlgebraic_left, relfinrank_top_right, restrictScalars_sup, FiniteGaloisIntermediateField.instFiniteDimensionalSubtypeMemIntermediateFieldMin, restrictScalars_top, mem_top, Field.primitive_element_iff_algHom_eq_of_eval', Subfield.extendScalars_inf, relrank_top_right, LinearDisjoint.bot_left, isTotallyReal_bot, normal_iSup, instFiniteSubtypeMemBot, isCyclotomicExtension_lcm_sup, sup_toSubalgebra_of_isAlgebraic, finrank_eq_one_iff, lift_top, sInf_toSubalgebra, eq_bot_of_isAlgClosed_of_isAlgebraic, insepDegree_bot', fg_sup, inf_relfinrank_right, sSup_def, restrictScalars_eq_top_iff, bot_eq_top_of_finrank_adjoin_eq_one, extendScalars_inf, botContinuousSMul, Field.exists_primitive_element_of_finite_bot, Field.exists_primitive_element_of_finite_top, adjoin_simple_eq_top_iff_of_isAlgebraic, rank_adjoin_eq_one_iff, adjoin_one, rank_top, adjoin_root_eq_top, normalClosure_def, lift_inf, instIsCompactlyGenerated, extendScalars_self, FiniteGaloisIntermediateField.instIsSeparableSubtypeMemIntermediateFieldMin_1, coe_inf, finrank_top, restrictScalars_adjoin_eq_sup, separableClosure.eq_top_iff, mem_inf, top_toSubalgebra, relrank_top_left, IsGaloisGroup.fixedPoints_bot, exists_root_adjoin_eq_top_of_isCyclic, finrank_eq_one_iff_eq_top, Subfield.extendScalars_top, LinearDisjoint.finrank_sup, NumberField.is_primitive_element_of_infinitePlace_lt, finrank_adjoin_eq_one_iff, bot_eq_top_of_rank_adjoin_eq_one, restrictScalars_inf, finrank_bot, InfiniteGalois.restrict_fixedField, sepDegree_bot, finInsepDegree_bot', restrictScalars_bot_eq_self, fg_bot, sup_def, finrank_sup_le, adjoin_empty, Field.Emb.Cardinal.eq_bot_of_not_nonempty, rank_bot, separableClosure_inf_perfectClosure, bot_eq_top_iff_finrank_eq_one, adjoin_eq_bot_iff, lift_sepDegree_bot', relfinrank_inf_mul_relfinrank, LinearDisjoint.inf_eq_bot, Field.exists_primitive_element_iff_finite_intermediateField, Field.Emb.Cardinal.filtration_apply, map_comap_eq, map_iSup, map_iInf, finrank_top', lift_bot, NumberField.mixedEmbedding.exists_primitive_element_lt_of_isReal, IsGalois.fixedField_top, Algebra.IsAlgebraic.isNormalClosure_iff, sup_toSubalgebra_of_left, isSplittingField_iSup, adjoin_simple_eq_bot_iff, relfinrank_bot_left, iSup_eq_adjoin, LinearDisjoint.rank_sup, rank_sup_le_of_isAlgebraic, adjoin_intCast, iSup_toSubfield, sepDegree_bot', LinearDisjoint.bot_right, Field.primitive_element_iff_minpoly_degree_eq, AlgHom.fieldRange_eq_top, isPurelyInseparable_iff_perfectClosure_eq_top, rank_eq_one_iff, relfinrank_mul_relfinrank_eq_inf_relfinrank, fg_iSup, eq_bot_of_isPurelyInseparable_of_isSeparable, adjoin_root_eq_top_of_isSplittingField, algebraicClosure.eq_top_iff, adjoin_iUnion, Field.primitive_element_iff_minpoly_natDegree_eq, normalClosure_def'', isScalarTower_over_bot, relfinrank_inf_mul_relfinrank_of_le, bot_toSubfield, topEquiv_symm_apply_coe, relrank_inf_mul_relrank_of_le, rank_top', topEquiv_apply, adjoin_natCast, normal_iInf, isPurelyInseparable_bot, top_toSubfield, Subfield.extendScalars_sup, finiteDimensional_iSup_of_finite, isSeparable_sup, IsGaloisGroup.fixingSubgroup_bot, isAlgebraic_iSup, normalClosure_eq_iSup_adjoin, fg_top, finInsepDegree_bot, AlgEquiv.fieldRange_eq_top, Field.Emb.Cardinal.iSup_adjoin_eq_top, toSubalgebra_iSup_of_directed, isSeparable_iSup, finrank_bot', sInf_toSubfield, botEquiv_def, adjoin_eq_top_iff, finSepDegree_bot', rank_sup_le, eq_bot_of_isSepClosed_of_isSeparable, bot_eq_top_of_finrank_adjoin_le_one, relrank_bot_right, InfiniteGalois.fixedField_bot, IsSepClosed.separableClosure_eq_bot_iff, FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldMin, lift_relrank_comap_comap_eq_lift_relrank_inf, adjoin_union, inf_toSubfield, adjoin_eq_top_of_algebra, extendScalars_top, perfectClosure.eq_bot_of_isSeparable, fixedField_bot, lift_sup, FiniteGaloisIntermediateField.instIsSeparableSubtypeMemIntermediateFieldMin, sup_toSubalgebra_of_right, insepDegree_bot, IsAlgClosed.algebraicClosure_eq_bot_iff, rank_bot', le_sup_toSubalgebra, insepDegree_top, IsGalois.tfae, map_inf, Field.Emb.Cardinal.iSup_filtration, isSimpleOrder_of_finrank_prime, LinearDisjoint.eq_bot_of_self, separableClosure.separableClosure_eq_bot, fg_top_iff, sup_toSubfield, relfinrank_comap_comap_eq_relfinrank_inf, sup_toSubalgebra_of_isAlgebraic_right, inf_relfinrank_left, relfinrank_top_left, map_sup, finSepDegree_top, inf_relrank_left, IsAdjoinRoot.primitive_element_root, Subfield.extendScalars_self, Field.Emb.Cardinal.adjoin_basis_eq_top, relrank_inf_mul_relrank, iInf_toSubalgebra, relrank_bot_left, Lifts.carrier_union, normalClosure_def', mem_bot, relrank_mul_relrank_eq_inf_relrank, fixingSubgroup_bot, coe_top, isGalois_bot, coe_sInf, isSplittingField_iff_intermediateField, isGalois_iff_isGalois_bot, Algebra.IsAlgebraic.normalClosure_eq_iSup_adjoin_of_splits, normal_sup, finiteDimensional_iSup_of_finset', finrank_adjoin_simple_eq_one_iff, Field.primitive_element_iff_algHom_eq_of_eval, finiteDimensional_sup, Algebra.IsAlgebraic.normalClosure_le_iSup_adjoin, separableClosure.eq_bot_iff, fixingSubgroup_sup, rank_adjoin_simple_eq_one_iff, separableClosure.adjoin_eq_of_isAlgebraic_of_isSeparable, isPurelyInseparable_sup, IsGalois.mem_bot_iff_fixed, map_bot, isCyclic_tfae, separableClosure.eq_bot_of_isPurelyInseparable, finSepDegree_bot, biSup_adjoin_simple, sepDegree_top, IsGaloisGroup.fixedPoints_eq_bot
instInhabited ๐Ÿ“–CompOpโ€”
instUnique ๐Ÿ“–CompOpโ€”
topEquiv ๐Ÿ“–CompOp
2 mathmath: topEquiv_symm_apply_coe, topEquiv_apply
ยซterm_โŸฎ_,,โŸฏยป ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_adjoin_comm ๐Ÿ“–mathematicalโ€”restrictScalars
IntermediateField
SetLike.instMembership
instSetLike
adjoin
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
instAlgebraSubtypeMem
isScalarTower_mid'
โ€”IsScalarTower.left
isScalarTower_mid'
adjoin_adjoin_left
Set.union_comm
adjoin_adjoin_left ๐Ÿ“–mathematicalโ€”restrictScalars
IntermediateField
SetLike.instMembership
instSetLike
adjoin
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
instAlgebraSubtypeMem
isScalarTower_mid'
Set
Set.instUnion
โ€”IsScalarTower.left
isScalarTower_mid'
SetLike.ext'_iff
subset_antisymm
Set.instAntisymmSubset
adjoin_subset_adjoin_iff
adjoin.mono
Set.subset_union_left
subset_adjoin_of_subset_right
Set.subset_union_right
Set.range_subset_iff
Subfield.subset_closure
adjoin.algebraMap_mem
Set.union_subset
adjoin_algHom_ext ๐Ÿ“–โ€”DFunLike.coe
AlgHom
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgHom.funLike
subset_adjoin
โ€”โ€”IsScalarTower.left
subset_adjoin
AlgHom.ext
adjoin_induction
algebraMap_mem
AlgHom.commutes
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
map_add
SemilinearMapClass.toAddHomClass
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
eq_on_invโ‚€
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
adjoin_contains_field_as_subfield ๐Ÿ“–mathematicalโ€”Set
Set.instHasSubset
SetLike.coe
Subfield
Field.toDivisionRing
Subfield.instSetLike
IntermediateField
SetLike.instMembership
Subfield.toField
Subfield.toAlgebra
instSetLike
adjoin
โ€”adjoin.algebraMap_mem
adjoin_empty ๐Ÿ“–mathematicalโ€”adjoin
Set
Set.instEmptyCollection
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
โ€”eq_bot_iff
adjoin_le_iff
Set.empty_subset
adjoin_eq_bot_iff ๐Ÿ“–mathematicalโ€”adjoin
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set
Set.instHasSubset
SetLike.coe
instSetLike
โ€”eq_bot_iff
adjoin_le_iff
adjoin_eq_range_algebraMap_adjoin ๐Ÿ“–mathematicalโ€”SetLike.coe
IntermediateField
instSetLike
adjoin
Set.range
SetLike.instMembership
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
instAlgebraSubtypeMem
Algebra.id
โ€”Subtype.range_coe
adjoin_iUnion ๐Ÿ“–mathematicalโ€”adjoin
Set.iUnion
iSup
IntermediateField
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
โ€”GaloisConnection.l_iSup
gc
adjoin_induction ๐Ÿ“–โ€”subset_adjoin
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
algebraMap_mem
adjoin
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMemClass.add_mem
IntermediateField
instSetLike
AddSubmonoidClass.toAddMemClass
AddMonoid.toAddZeroClass
AddMonoidWithOne.toAddMonoid
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Ring.toSemiring
DivisionRing.toRing
Field.toDivisionRing
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
InvMemClass.inv_mem
SubfieldClass.toInvMemClass
Distrib.toMul
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
MulZeroOneClass.toMulOneClass
NonAssocSemiring.toMulZeroOneClass
SubsemiringClass.toSubmonoidClass
SetLike.instMembership
โ€”โ€”subset_adjoin
algebraMap_mem
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
InvMemClass.inv_mem
SubfieldClass.toInvMemClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
Subfield.closure_induction
Subfield.subset_closure
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
Subfield.instSubfieldClass
RingHom.map_one
NegMemClass.neg_mem
SubringClass.toNegMemClass
neg_one_smul
Algebra.smul_def
adjoin_insert_adjoin ๐Ÿ“–mathematicalโ€”adjoin
Set
Set.instInsert
SetLike.coe
IntermediateField
instSetLike
โ€”le_antisymm
adjoin_le_iff
Set.insert_subset_iff
subset_adjoin
Set.mem_insert
subset_adjoin_of_subset_right
Set.subset_insert
le_imp_le_of_le_of_le
le_refl
adjoin.mono
Set.insert_subset_insert
adjoin_intCast ๐Ÿ“–mathematicalโ€”adjoin
Set
Set.instSingletonSet
AddGroupWithOne.toIntCast
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
โ€”adjoin_simple_eq_bot_iff
intCast_mem
SubfieldClass.toSubringClass
instSubfieldClass
adjoin_le_iff ๐Ÿ“–mathematicalโ€”IntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
adjoin
Set
Set.instHasSubset
SetLike.coe
instSetLike
โ€”le_trans
Set.subset_union_right
Subfield.subset_closure
Subfield.closure_le
Set.union_subset
set_range_subset
adjoin_le_subfield ๐Ÿ“–mathematicalSet
Set.instHasSubset
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
SetLike.coe
Subfield
Field.toDivisionRing
Subfield.instSetLike
Preorder.toLE
PartialOrder.toPreorder
Subfield.instPartialOrder
toSubfield
adjoin
โ€”โ€”
adjoin_map ๐Ÿ“–mathematicalโ€”map
adjoin
Set.image
DFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.funLike
โ€”le_antisymm
map_le_iff_le_comap
adjoin_le_iff
subset_adjoin
Set.monotone_image
adjoin_natCast ๐Ÿ“–mathematicalโ€”adjoin
Set
Set.instSingletonSet
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
โ€”adjoin_simple_eq_bot_iff
natCast_mem
adjoin_one ๐Ÿ“–mathematicalโ€”adjoin
Set
Set.instSingletonSet
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
โ€”adjoin_simple_eq_bot_iff
OneMemClass.one_mem
AddSubmonoidWithOneClass.toOneMemClass
SubsemiringClass.addSubmonoidWithOneClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
adjoin_self ๐Ÿ“–mathematicalโ€”adjoin
SetLike.coe
IntermediateField
instSetLike
โ€”le_antisymm
adjoin_le_iff
subset_adjoin
adjoin_simple_adjoin_simple ๐Ÿ“–mathematicalโ€”restrictScalars
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
instAlgebraSubtypeMem
isScalarTower_mid'
Set.instInsert
โ€”adjoin_adjoin_left
adjoin_simple_comm ๐Ÿ“–mathematicalโ€”restrictScalars
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
instAlgebraSubtypeMem
isScalarTower_mid'
โ€”adjoin_adjoin_comm
adjoin_simple_eq_bot_iff ๐Ÿ“–mathematicalโ€”adjoin
Set
Set.instSingletonSet
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
SetLike.instMembership
instSetLike
โ€”โ€”
adjoin_simple_le_iff ๐Ÿ“–mathematicalโ€”IntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
adjoin
Set
Set.instSingletonSet
SetLike.instMembership
instSetLike
โ€”โ€”
adjoin_subset_adjoin_iff ๐Ÿ“–mathematicalโ€”Set
Set.instHasSubset
SetLike.coe
IntermediateField
instSetLike
adjoin
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
โ€”HasSubset.Subset.trans
Set.instIsTransSubset
adjoin.range_algebraMap_subset
subset_adjoin
Subfield.closure_le
Set.union_subset
adjoin_toSubfield ๐Ÿ“–mathematicalโ€”toSubfield
adjoin
Subfield.closure
Field.toDivisionRing
Set
Set.instUnion
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
โ€”โ€”
adjoin_union ๐Ÿ“–mathematicalโ€”adjoin
Set
Set.instUnion
IntermediateField
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
โ€”GaloisConnection.l_sup
gc
adjoin_univ ๐Ÿ“–mathematicalโ€”adjoin
Set.univ
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
โ€”eq_top_iff
subset_adjoin
adjoin_zero ๐Ÿ“–mathematicalโ€”adjoin
Set
Set.instSingletonSet
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
โ€”adjoin_simple_eq_bot_iff
ZeroMemClass.zero_mem
AddSubmonoidClass.toZeroMemClass
SubsemiringClass.toAddSubmonoidClass
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
algHom_ext_of_eq_adjoin ๐Ÿ“–โ€”adjoin
DFunLike.coe
AlgHom
IntermediateField
SetLike.instMembership
instSetLike
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgHom.funLike
Eq.ge
PartialOrder.toPreorder
instPartialOrder
subset_adjoin
โ€”โ€”IsScalarTower.left
Eq.ge
subset_adjoin
adjoin_algHom_ext
biSup_adjoin_simple ๐Ÿ“–mathematicalโ€”iSup
IntermediateField
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Set
Set.instMembership
adjoin
Set.instSingletonSet
โ€”iSup_subtype''
GaloisConnection.l_iSup
gc
Set.biUnion_of_singleton
botEquiv_def ๐Ÿ“–mathematicalโ€”DFunLike.coe
AlgEquiv
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
botEquiv
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
โ€”IsScalarTower.left
AlgEquiv.commutes
botEquiv_symm ๐Ÿ“–mathematicalโ€”DFunLike.coe
AlgEquiv
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
Algebra.id
algebra'
Algebra.toSMul
CommSemiring.toSemiring
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
AlgEquiv.symm
botEquiv
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
algebraMap
โ€”IsScalarTower.left
bot_toSubalgebra ๐Ÿ“–mathematicalโ€”toSubalgebra
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.instCompleteLatticeSubalgebra
โ€”โ€”
bot_toSubfield ๐Ÿ“–mathematicalโ€”toSubfield
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
RingHom.fieldRange
Field.toDivisionRing
algebraMap
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
โ€”โ€”
coe_algebraMap_over_bot ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingHom
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
algebraOverBot
AlgEquiv
toField
algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
botEquiv
โ€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
coe_bot ๐Ÿ“–mathematicalโ€”SetLike.coe
IntermediateField
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
โ€”โ€”
coe_iInf ๐Ÿ“–mathematicalโ€”SetLike.coe
IntermediateField
instSetLike
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Set.iInter
โ€”Set.sInter_image
Set.iInter_congr_Prop
Set.iInter_exists
Set.iInter_iInter_eq'
coe_inf ๐Ÿ“–mathematicalโ€”SetLike.coe
IntermediateField
instSetLike
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Set
Set.instInter
โ€”โ€”
coe_sInf ๐Ÿ“–mathematicalโ€”SetLike.coe
IntermediateField
instSetLike
InfSet.sInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Set
Set.instInfSet
Set.image
โ€”โ€”
coe_top ๐Ÿ“–mathematicalโ€”SetLike.coe
IntermediateField
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Set.univ
โ€”โ€”
comap_map ๐Ÿ“–mathematicalโ€”comap
map
โ€”SetLike.coe_injective
Set.preimage_image_eq
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
extendScalars_adjoin ๐Ÿ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
adjoin
extendScalars
SetLike.instMembership
instSetLike
toField
instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
โ€”restrictScalars_injective
IsScalarTower.left
isScalarTower_mid'
extendScalars_restrictScalars
restrictScalars_adjoin
le_antisymm
adjoin.mono
Set.subset_union_right
adjoin_le_iff
Set.union_subset
subset_adjoin
extendScalars_inf ๐Ÿ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
toField
instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
extendScalars
le_inf
โ€”OrderIso.map_inf
extendScalars_self ๐Ÿ“–mathematicalโ€”extendScalars
le_refl
IntermediateField
PartialOrder.toPreorder
instPartialOrder
Bot.bot
SetLike.instMembership
instSetLike
toField
instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
OrderBot.toBot
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
โ€”restrictScalars_injective
IsScalarTower.left
isScalarTower_mid'
le_refl
restrictScalars_bot_eq_self
extendScalars_sup ๐Ÿ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SetLike.instMembership
instSetLike
toField
instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
extendScalars
le_sup_of_le_left
โ€”OrderIso.map_sup
extendScalars_top ๐Ÿ“–mathematicalโ€”extendScalars
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
instCompleteLattice
le_top
SetLike.instMembership
instSetLike
toField
instAlgebraSubtypeMem
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Algebra.id
Semifield.toCommSemiring
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
โ€”restrictScalars_injective
IsScalarTower.left
isScalarTower_mid'
le_top
fg_adjoin_finset ๐Ÿ“–mathematicalโ€”FG
adjoin
SetLike.coe
Finset
Finset.instSetLike
โ€”โ€”
fg_adjoin_of_finite ๐Ÿ“–mathematicalโ€”FG
adjoin
โ€”fg_def
fg_bot ๐Ÿ“–mathematicalโ€”FG
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
โ€”Finset.coe_empty
adjoin_empty
fg_def ๐Ÿ“–mathematicalโ€”FG
Set.Finite
adjoin
โ€”Set.exists_finite_iff_finset
fg_iSup ๐Ÿ“–mathematicalFGiSup
IntermediateField
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
โ€”fg_adjoin_of_finite
Set.finite_iUnion
Finset.finite_toSet
fg_sup ๐Ÿ“–mathematicalFGIntermediateField
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
โ€”adjoin_union
Finset.coe_union
fg_adjoin_finset
gc ๐Ÿ“–mathematicalโ€”GaloisConnection
Set
IntermediateField
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
instPartialOrder
adjoin
SetLike.coe
instSetLike
โ€”adjoin_le_iff
iInf_toSubalgebra ๐Ÿ“–mathematicalโ€”toSubalgebra
iInf
IntermediateField
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.instCompleteLatticeSubalgebra
โ€”SetLike.coe_injective
sInf_toSubalgebra
Algebra.coe_sInf
Set.iInter_congr_Prop
Set.iInter_exists
Set.iInter_iInter_eq'
iInf_toSubfield ๐Ÿ“–mathematicalโ€”toSubfield
iInf
IntermediateField
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subfield
Field.toDivisionRing
Subfield.instInfSet
โ€”SetLike.coe_injective
sInf_toSubfield
Subfield.coe_sInf
Set.iInter_congr_Prop
Set.iInter_exists
Set.iInter_iInter_eq'
iSup_eq_adjoin ๐Ÿ“–mathematicalโ€”iSup
IntermediateField
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
adjoin
Set.iUnion
SetLike.coe
instSetLike
โ€”adjoin_iUnion
adjoin_self
iSup_toSubfield ๐Ÿ“–mathematicalโ€”toSubfield
iSup
IntermediateField
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subfield
Field.toDivisionRing
Subfield.instCompleteLattice
โ€”sSup_toSubfield
induction_on_adjoin_fg ๐Ÿ“–โ€”Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
restrictScalars
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
instAlgebraSubtypeMem
isScalarTower_mid'
adjoin
Set
Set.instSingletonSet
FG
โ€”โ€”IsScalarTower.left
isScalarTower_mid'
induction_on_adjoin_finset
induction_on_adjoin_finset ๐Ÿ“–mathematicalBot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
restrictScalars
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
instAlgebraSubtypeMem
isScalarTower_mid'
adjoin
Set
Set.instSingletonSet
SetLike.coe
Finset
Finset.instSetLike
โ€”IsScalarTower.left
isScalarTower_mid'
Finset.induction_on'
Finset.coe_empty
adjoin_empty
Finset.coe_insert
Set.insert_eq
Set.union_comm
adjoin_adjoin_left
inf_toSubalgebra ๐Ÿ“–mathematicalโ€”toSubalgebra
IntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.instCompleteLatticeSubalgebra
โ€”โ€”
inf_toSubfield ๐Ÿ“–mathematicalโ€”toSubfield
IntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subfield
Field.toDivisionRing
Subfield.instMin
โ€”โ€”
instIsScalarTowerSubtypeMemAdjoinSingletonSetCoeRingHomAlgebraMap ๐Ÿ“–mathematicalโ€”IsScalarTower
IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
Algebra.toSMul
SubsemiringClass.toCommSemiring
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
instSubfieldClass
toField
instAlgebraSubtypeMemAdjoinSingletonSetCoeRingHomAlgebraMap
instSMulSubtypeMem
Algebra.id
โ€”IsScalarTower.of_algebraMap_eq'
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
isScalarTower_over_bot ๐Ÿ“–mathematicalโ€”IsScalarTower
IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Algebra.toSMul
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
algebraOverBot
instSMulSubtypeMem
CommSemiring.toSemiring
Algebra.id
โ€”IsScalarTower.of_algebraMap_eq
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsScalarTower.left
AlgEquiv.surjective
coe_algebraMap_over_bot
AlgEquiv.apply_symm_apply
botEquiv_symm
IsScalarTower.algebraMap_apply
isScalarTower_mid'
lift_adjoin ๐Ÿ“–mathematicalโ€”lift
adjoin
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
Set.image
โ€”adjoin_map
lift_adjoin_simple ๐Ÿ“–mathematicalโ€”lift
adjoin
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
Set
Set.instSingletonSet
โ€”IsScalarTower.left
lift_adjoin
Set.image_singleton
lift_bot ๐Ÿ“–mathematicalโ€”lift
Bot.bot
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
โ€”map_bot
lift_inf ๐Ÿ“–mathematicalโ€”lift
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
โ€”IsScalarTower.left
map_inf
lift_sup ๐Ÿ“–mathematicalโ€”lift
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
โ€”IsScalarTower.left
map_sup
lift_top ๐Ÿ“–mathematicalโ€”lift
Top.top
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
โ€”IsScalarTower.left
lift.eq_1
AlgHom.fieldRange_eq_map
fieldRange_val
map_bot ๐Ÿ“–mathematicalโ€”map
Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
โ€”toSubalgebra_injective
Algebra.map_bot
map_comap_eq ๐Ÿ“–mathematicalโ€”map
comap
IntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
AlgHom.fieldRange
โ€”SetLike.coe_injective
Set.image_preimage_eq_inter_range
map_comap_eq_self ๐Ÿ“–mathematicalIntermediateField
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
AlgHom.fieldRange
map
comap
โ€”inf_of_le_left
map_comap_eq
map_comap_eq_self_of_surjective ๐Ÿ“–mathematicalDFunLike.coe
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgHom.funLike
map
comap
โ€”SetLike.coe_injective
Set.image_preimage_eq
map_iInf ๐Ÿ“–mathematicalโ€”map
iInf
IntermediateField
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
โ€”SetLike.coe_injective
coe_iInf
Set.image_congr
Set.InjOn.image_iInter_eq
Set.injOn_of_injective
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
map_iSup ๐Ÿ“–mathematicalโ€”map
iSup
IntermediateField
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
โ€”GaloisConnection.l_iSup
gc_map_comap
map_inf ๐Ÿ“–mathematicalโ€”map
IntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
โ€”SetLike.coe_injective
Set.image_inter
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
map_sup ๐Ÿ“–mathematicalโ€”map
IntermediateField
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
โ€”GaloisConnection.l_sup
gc_map_comap
mem_adjoin_iff_div ๐Ÿ“–mathematicalโ€”IntermediateField
SetLike.instMembership
instSetLike
adjoin
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Subalgebra.instSetLike
Algebra.adjoin
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
โ€”โ€”
mem_adjoin_of_mem ๐Ÿ“–mathematicalSet
Set.instMembership
IntermediateField
SetLike.instMembership
instSetLike
adjoin
โ€”subset_adjoin
mem_adjoin_simple_self ๐Ÿ“–mathematicalโ€”IntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instSingletonSet
โ€”subset_adjoin
Set.mem_singleton
mem_bot ๐Ÿ“–mathematicalโ€”IntermediateField
SetLike.instMembership
instSetLike
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
Set
Set.instMembership
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
โ€”โ€”
mem_inf ๐Ÿ“–mathematicalโ€”IntermediateField
SetLike.instMembership
instSetLike
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
โ€”โ€”
mem_top ๐Ÿ“–mathematicalโ€”IntermediateField
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
โ€”โ€”
notMem_of_notMem_adjoin ๐Ÿ“–mathematicalIntermediateField
SetLike.instMembership
instSetLike
adjoin
Set
Set.instMembership
โ€”mem_adjoin_of_mem
restrictScalars_adjoin ๐Ÿ“–mathematicalโ€”restrictScalars
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
instAlgebraSubtypeMem
isScalarTower_mid'
adjoin
Set
Set.instUnion
SetLike.coe
โ€”IsScalarTower.left
isScalarTower_mid'
adjoin_self
adjoin_adjoin_left
restrictScalars_adjoin_eq_sup ๐Ÿ“–mathematicalโ€”restrictScalars
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
instAlgebraSubtypeMem
isScalarTower_mid'
adjoin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
โ€”IsScalarTower.left
isScalarTower_mid'
restrictScalars_adjoin
adjoin_union
adjoin_self
restrictScalars_adjoin_of_algEquiv ๐Ÿ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
AlgEquiv
AlgEquiv.instFunLike
restrictScalars
adjoin
โ€”ext
restrictScalars_toSubfield
EquivLike.range_comp
restrictScalars_bot_eq_self ๐Ÿ“–mathematicalโ€”restrictScalars
IntermediateField
SetLike.instMembership
instSetLike
toField
algebra'
Semifield.toCommSemiring
Field.toSemifield
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
instAlgebraSubtypeMem
isScalarTower_mid'
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
โ€”SetLike.coe_injective
IsScalarTower.left
isScalarTower_mid'
Subtype.range_coe
restrictScalars_eq_top_iff ๐Ÿ“–mathematicalโ€”restrictScalars
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
โ€”โ€”
restrictScalars_inf ๐Ÿ“–mathematicalโ€”IntermediateField
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
restrictScalars
โ€”โ€”
restrictScalars_sup ๐Ÿ“–mathematicalโ€”IntermediateField
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
restrictScalars
โ€”toSubfield_injective
sup_toSubfield
restrictScalars_toSubfield
restrictScalars_top ๐Ÿ“–mathematicalโ€”restrictScalars
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
โ€”โ€”
sInf_toSubalgebra ๐Ÿ“–mathematicalโ€”toSubalgebra
InfSet.sInf
IntermediateField
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.instCompleteLatticeSubalgebra
Set.image
โ€”SetLike.coe_injective
Set.sInter_image
Algebra.coe_sInf
Set.iInter_congr_Prop
Set.iInter_exists
Set.biInter_and'
Set.iInter_iInter_eq_right
sInf_toSubfield ๐Ÿ“–mathematicalโ€”toSubfield
InfSet.sInf
IntermediateField
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subfield
Field.toDivisionRing
Subfield.instInfSet
Set.image
โ€”SetLike.coe_injective
Set.sInter_image
Subfield.coe_sInf
Set.iInter_congr_Prop
Set.iInter_exists
Set.biInter_and'
Set.iInter_iInter_eq_right
sSup_def ๐Ÿ“–mathematicalโ€”SupSet.sSup
IntermediateField
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
adjoin
Set.sUnion
Set.image
Set
SetLike.coe
instSetLike
โ€”โ€”
sSup_toSubfield ๐Ÿ“–mathematicalSet.Nonempty
IntermediateField
toSubfield
SupSet.sSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subfield
Field.toDivisionRing
Subfield.instCompleteLattice
Set.image
โ€”Set.image_image
Set.image_congr
Subfield.closure_eq
sSup_image
Subfield.closure_sUnion
sSup_def
adjoin_toSubfield
Set.union_eq_right
algebraMap_mem
subset_adjoin ๐Ÿ“–mathematicalโ€”Set
Set.instHasSubset
SetLike.coe
IntermediateField
instSetLike
adjoin
โ€”Subfield.subset_closure
subset_adjoin_of_subset_left ๐Ÿ“–mathematicalSet
Set.instHasSubset
SetLike.coe
Subfield
Field.toDivisionRing
Subfield.instSetLike
IntermediateField
SetLike.instMembership
Subfield.toField
Subfield.toAlgebra
instSetLike
adjoin
โ€”algebraMap_mem
subset_adjoin_of_subset_right ๐Ÿ“–mathematicalSet
Set.instHasSubset
SetLike.coe
IntermediateField
instSetLike
adjoin
โ€”subset_adjoin
sup_def ๐Ÿ“–mathematicalโ€”IntermediateField
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
adjoin
Set
Set.instUnion
SetLike.coe
instSetLike
โ€”โ€”
sup_toSubfield ๐Ÿ“–mathematicalโ€”toSubfield
IntermediateField
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
Subfield
Field.toDivisionRing
Subfield.instCompleteLattice
โ€”Subfield.closure_eq
Subfield.closure_union
Set.union_eq_right
Set.mem_union_left
algebraMap_mem
topEquiv_apply ๐Ÿ“–mathematicalโ€”DFunLike.coe
AlgEquiv
IntermediateField
SetLike.instMembership
instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
topEquiv
Subalgebra
Subalgebra.instSetLike
Algebra.instCompleteLatticeSubalgebra
โ€”IsScalarTower.left
topEquiv_symm_apply_coe ๐Ÿ“–mathematicalโ€”Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
SetLike.instMembership
Subalgebra.instSetLike
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Algebra.instCompleteLatticeSubalgebra
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
DFunLike.coe
AlgEquiv
IntermediateField
instSetLike
instCompleteLattice
toField
algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Module.toDistribMulAction
Algebra.toModule
AlgEquiv.instFunLike
AlgEquiv.symm
topEquiv
โ€”IsScalarTower.left
top_toSubalgebra ๐Ÿ“–mathematicalโ€”toSubalgebra
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Subalgebra
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.instCompleteLatticeSubalgebra
โ€”โ€”
top_toSubfield ๐Ÿ“–mathematicalโ€”toSubfield
Top.top
IntermediateField
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
Subfield
Field.toDivisionRing
Subfield.instTop
โ€”โ€”

IntermediateField.AdjoinSimple

Definitions

NameCategoryTheorems
gen ๐Ÿ“–CompOp
22 mathmath: trace_gen_eq_sum_roots, IntermediateField.aeval_gen_minpoly, minpoly.algEquiv_apply, IntermediateField.adjoinRootEquivAdjoin_symm_apply_gen, PowerBasis.equivAdjoinSimple_symm_aeval, IntermediateField.minpoly_gen, IntermediateField.adjoin.powerBasis_gen, norm_gen_eq_one, PowerBasis.equivAdjoinSimple_aeval, trace_eq_trace_adjoin, PowerBasis.equivAdjoinSimple_gen, PowerBasis.equivAdjoinSimple_symm_gen, Algebra.norm_eq_norm_adjoin, IntermediateField.adjoinRootEquivAdjoin_apply_root, trace_gen_eq_zero, IntermediateField.algHomAdjoinIntegralEquiv_symm_apply_gen, norm_gen_eq_prod_roots, Algebra.normalizedTrace_def, isIntegral_gen, coe_gen, trace_adjoinSimpleGen, algebraMap_gen

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_gen ๐Ÿ“–mathematicalโ€”DFunLike.coe
RingHom
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
SubsemiringClass.toCommSemiring
Semifield.toCommSemiring
Field.toSemifield
SubringClass.toSubsemiringClass
DivisionRing.toRing
Field.toDivisionRing
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
IntermediateField.instAlgebraSubtypeMem
Algebra.id
gen
โ€”SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
IntermediateField.instSubfieldClass
coe_gen ๐Ÿ“–mathematicalโ€”IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
gen
โ€”โ€”

IntermediateField.RingHom

Definitions

NameCategoryTheorems
adjoinAlgebraMap ๐Ÿ“–CompOpโ€”

IntermediateField.adjoin

Definitions

NameCategoryTheorems
fieldCoe ๐Ÿ“–CompOpโ€”
setCoe ๐Ÿ“–CompOpโ€”

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_mem ๐Ÿ“–mathematicalโ€”IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
โ€”IntermediateField.algebraMap_mem
mono ๐Ÿ“–mathematicalSet
Set.instHasSubset
IntermediateField
Preorder.toLE
PartialOrder.toPreorder
IntermediateField.instPartialOrder
IntermediateField.adjoin
โ€”GaloisConnection.monotone_l
IntermediateField.gc
range_algebraMap_subset ๐Ÿ“–mathematicalโ€”Set
Set.instHasSubset
Set.range
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
RingHom.instFunLike
algebraMap
SetLike.coe
IntermediateField
IntermediateField.instSetLike
IntermediateField.adjoin
โ€”IntermediateField.set_range_subset

Subfield

Theorems

NameKindAssumesProvesValidatesDepends On
extendScalars_inf ๐Ÿ“–mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IntermediateField
SetLike.instMembership
instSetLike
toField
toAlgebra
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
extendScalars
instCompleteLattice
le_inf
โ€”OrderIso.map_inf
extendScalars_self ๐Ÿ“–mathematicalโ€”extendScalars
le_refl
Subfield
Field.toDivisionRing
PartialOrder.toPreorder
instPartialOrder
Bot.bot
IntermediateField
SetLike.instMembership
instSetLike
toField
toAlgebra
OrderBot.toBot
Preorder.toLE
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
โ€”IntermediateField.ext
le_refl
mem_extendScalars
IntermediateField.mem_bot
extendScalars_sup ๐Ÿ“–mathematicalSubfield
Field.toDivisionRing
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IntermediateField
SetLike.instMembership
instSetLike
toField
toAlgebra
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
IntermediateField.instCompleteLattice
extendScalars
instCompleteLattice
le_sup_of_le_left
โ€”OrderIso.map_sup
extendScalars_top ๐Ÿ“–mathematicalโ€”extendScalars
Top.top
Subfield
Field.toDivisionRing
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
instCompleteLattice
le_top
IntermediateField
SetLike.instMembership
instSetLike
toField
toAlgebra
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
IntermediateField.instCompleteLattice
โ€”IntermediateField.toSubfield_injective
le_top
extendScalars_toSubfield

---

โ† Back to Index