| Name | Category | Theorems |
Monics 📖 | CompOp | 1 mathmath: Monics.map_eq_prod
|
Vars 📖 | CompOp | 7 mathmath: IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic, maxIdeal.isMaximal, instIsAlgClosureOfIsAlgebraic, instIsAlgClosure, le_maxIdeal, toSplittingField_coeff, Monics.map_eq_prod
|
finEquivRoots 📖 | CompOp | — |
instAlgebra 📖 | CompOp | 34 mathmath: Field.Emb.Cardinal.equivLim_coherence, IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic, SeparableClosure.isSepClosed, Field.Emb.Cardinal.instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor, IntermediateField.AdjoinDouble.normal_algebraicClosure, Algebra.isGeometricallyReduced_iff, Field.Emb.Cardinal.succEquiv_coherence, Ring.instIsScalarTowerSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, PadicAlgCl.norm_extends, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, Field.absoluteGaloisGroup.commutator_closure_isNormal, Algebra.IsGeometricallyReduced.isReduced_algebraicClosure_tensorProduct, instIsAlgClosureOfIsAlgebraic, SeparableClosure.hasEnoughRootsOfUnity_pow, Ring.instIsFractionRingNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, PadicAlgCl.spectralNorm_eq, Field.Emb.Cardinal.equivSucc_coherence, instSeminormClassAlgebraNormSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, SeparableClosure.hasEnoughRootsOfUnity, instIsAlgClosure, Ring.instIsSeparableFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, PadicAlgCl.isAlgebraic, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, Monics.map_eq_prod, spectralNorm.eq_of_normalClosure, Ring.instFiniteDimensionalFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, spectralNorm.eq_of_normalClosure', IntermediateField.AdjoinSimple.normal_algebraicClosure, Ring.instFaithfulSMulSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, isAlgebraic, PadicAlgCl.coe_eq, Ring.instIsIntegralClosureNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure_1
|
instCommRing 📖 | CompOp | 6 mathmath: PadicComplex.coe_eq, Algebra.isGeometricallyReduced_iff, hasEnoughRootsOfUnity, Algebra.IsGeometricallyReduced.isReduced_algebraicClosure_tensorProduct, hasEnoughRootsOfUnity_pow, PadicComplexInt.integers
|
instField 📖 | CompOp | 41 mathmath: Field.Emb.Cardinal.equivLim_coherence, IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic, SeparableClosure.isSepClosed, PadicComplex.coe_eq, Field.Emb.Cardinal.instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor, PadicComplex.norm_def, IntermediateField.AdjoinDouble.normal_algebraicClosure, Algebra.isGeometricallyReduced_iff, Field.Emb.Cardinal.succEquiv_coherence, Ring.instIsScalarTowerSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, PadicAlgCl.norm_extends, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, Field.absoluteGaloisGroup.commutator_closure_isNormal, Algebra.IsGeometricallyReduced.isReduced_algebraicClosure_tensorProduct, instIsAlgClosureOfIsAlgebraic, instCharP, SeparableClosure.hasEnoughRootsOfUnity_pow, Ring.instIsFractionRingNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, PadicAlgCl.spectralNorm_eq, Field.Emb.Cardinal.equivSucc_coherence, instSeminormClassAlgebraNormSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, SeparableClosure.hasEnoughRootsOfUnity, instIsAlgClosure, Ring.instIsSeparableFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, PadicAlgCl.isAlgebraic, PadicComplex.instIsScalarTowerPadicPadicAlgCl, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, Monics.map_eq_prod, spectralNorm.eq_of_normalClosure, Ring.instFiniteDimensionalFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, spectralNorm.eq_of_normalClosure', IntermediateField.AdjoinSimple.normal_algebraicClosure, Ring.instFaithfulSMulSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, isAlgebraic, PadicAlgCl.coe_eq, isAlgClosed, Ring.instIsIntegralClosureNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure_1, instCharZero, PadicComplexInt.integers
|
instGroupWithZero 📖 | CompOp | — |
instInhabited 📖 | CompOp | — |
instSMulOfIsScalarTower 📖 | CompOp | 3 mathmath: PadicAlgCl.instUniformContinuousConstSMulPadic, PadicComplex.instIsScalarTowerPadicPadicAlgCl, instIsScalarTower
|
maxIdeal 📖 | CompOp | 6 mathmath: IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic, maxIdeal.isMaximal, instIsAlgClosureOfIsAlgebraic, instIsAlgClosure, le_maxIdeal, Monics.map_eq_prod
|
spanCoeffs 📖 | CompOp | 1 mathmath: le_maxIdeal
|
subProdXSubC 📖 | CompOp | 1 mathmath: toSplittingField_coeff
|
toSplittingField 📖 | CompOp | 1 mathmath: toSplittingField_coeff
|