Documentation Verification Report

AlgebraicClosure

📁 Source: Mathlib/FieldTheory/IsAlgClosed/AlgebraicClosure.lean

Statistics

MetricCount
DefinitionsMonics, Vars, finEquivRoots, instAlgebra, instCommRing, instField, instGroupWithZero, instInhabited, instSMulOfIsScalarTower, maxIdeal, spanCoeffs, subProdXSubC, toSplittingField
13
Theoremsmap_eq_prod, splits_finsetProd, instCharP, instCharZero, instIsAlgClosure, instIsAlgClosureOfIsAlgebraic, instIsScalarTower, isAlgClosed, isAlgebraic, le_maxIdeal, isMaximal, spanCoeffs_ne_top, toSplittingField_coeff, normal_algebraicClosure, normal_algebraicClosure, instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic
16
Total29

AlgebraicClosure

Definitions

NameCategoryTheorems
Monics 📖CompOp
1 mathmath: Monics.map_eq_prod
Vars 📖CompOp
7 mathmath: IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic, maxIdeal.isMaximal, instIsAlgClosureOfIsAlgebraic, instIsAlgClosure, le_maxIdeal, toSplittingField_coeff, Monics.map_eq_prod
finEquivRoots 📖CompOp
instAlgebra 📖CompOp
34 mathmath: Field.Emb.Cardinal.equivLim_coherence, IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic, SeparableClosure.isSepClosed, Field.Emb.Cardinal.instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor, IntermediateField.AdjoinDouble.normal_algebraicClosure, Algebra.isGeometricallyReduced_iff, Field.Emb.Cardinal.succEquiv_coherence, Ring.instIsScalarTowerSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, PadicAlgCl.norm_extends, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, Field.absoluteGaloisGroup.commutator_closure_isNormal, Algebra.IsGeometricallyReduced.isReduced_algebraicClosure_tensorProduct, instIsAlgClosureOfIsAlgebraic, SeparableClosure.hasEnoughRootsOfUnity_pow, Ring.instIsFractionRingNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, PadicAlgCl.spectralNorm_eq, Field.Emb.Cardinal.equivSucc_coherence, instSeminormClassAlgebraNormSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, SeparableClosure.hasEnoughRootsOfUnity, instIsAlgClosure, Ring.instIsSeparableFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, PadicAlgCl.isAlgebraic, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, Monics.map_eq_prod, spectralNorm.eq_of_normalClosure, Ring.instFiniteDimensionalFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, spectralNorm.eq_of_normalClosure', IntermediateField.AdjoinSimple.normal_algebraicClosure, Ring.instFaithfulSMulSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, isAlgebraic, PadicAlgCl.coe_eq, Ring.instIsIntegralClosureNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure_1
instCommRing 📖CompOp
6 mathmath: PadicComplex.coe_eq, Algebra.isGeometricallyReduced_iff, hasEnoughRootsOfUnity, Algebra.IsGeometricallyReduced.isReduced_algebraicClosure_tensorProduct, hasEnoughRootsOfUnity_pow, PadicComplexInt.integers
instField 📖CompOp
41 mathmath: Field.Emb.Cardinal.equivLim_coherence, IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic, SeparableClosure.isSepClosed, PadicComplex.coe_eq, Field.Emb.Cardinal.instInverseSystemWithTopToTypeOrdRankAlgHomSubtypeMemIntermediateFieldCoeOrderEmbeddingFiltrationAlgebraicClosureEmbFunctor, PadicComplex.norm_def, IntermediateField.AdjoinDouble.normal_algebraicClosure, Algebra.isGeometricallyReduced_iff, Field.Emb.Cardinal.succEquiv_coherence, Ring.instIsScalarTowerSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, PadicAlgCl.norm_extends, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure_1, Field.absoluteGaloisGroup.commutator_closure_isNormal, Algebra.IsGeometricallyReduced.isReduced_algebraicClosure_tensorProduct, instIsAlgClosureOfIsAlgebraic, instCharP, SeparableClosure.hasEnoughRootsOfUnity_pow, Ring.instIsFractionRingNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, PadicAlgCl.spectralNorm_eq, Field.Emb.Cardinal.equivSucc_coherence, instSeminormClassAlgebraNormSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, SeparableClosure.hasEnoughRootsOfUnity, instIsAlgClosure, Ring.instIsSeparableFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, PadicAlgCl.isAlgebraic, PadicComplex.instIsScalarTowerPadicPadicAlgCl, Ring.instIsScalarTowerFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, Monics.map_eq_prod, spectralNorm.eq_of_normalClosure, Ring.instFiniteDimensionalFractionRingSubtypeAlgebraicClosureMemIntermediateFieldNormalClosure, spectralNorm.eq_of_normalClosure', IntermediateField.AdjoinSimple.normal_algebraicClosure, Ring.instFaithfulSMulSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, isAlgebraic, PadicAlgCl.coe_eq, isAlgClosed, Ring.instIsIntegralClosureNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure, Ring.instIsScalarTowerNormalClosureSubtypeAlgebraicClosureFractionRingMemIntermediateFieldNormalClosure_1, instCharZero, PadicComplexInt.integers
instGroupWithZero 📖CompOp
instInhabited 📖CompOp
instSMulOfIsScalarTower 📖CompOp
3 mathmath: PadicAlgCl.instUniformContinuousConstSMulPadic, PadicComplex.instIsScalarTowerPadicPadicAlgCl, instIsScalarTower
maxIdeal 📖CompOp
6 mathmath: IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic, maxIdeal.isMaximal, instIsAlgClosureOfIsAlgebraic, instIsAlgClosure, le_maxIdeal, Monics.map_eq_prod
spanCoeffs 📖CompOp
1 mathmath: le_maxIdeal
subProdXSubC 📖CompOp
1 mathmath: toSplittingField_coeff
toSplittingField 📖CompOp
1 mathmath: toSplittingField_coeff

Theorems

NameKindAssumesProvesValidatesDepends On
instCharP 📖mathematicalCharP
AlgebraicClosure
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
charP_of_injective_algebraMap
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
instCharZero 📖mathematicalCharZero
AlgebraicClosure
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
instField
charZero_of_injective_algebraMap
RingHom.injective
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
instIsAlgClosure 📖mathematicalIsAlgClosure
AlgebraicClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
instAlgebra
CommRing.toCommSemiring
Algebra.id
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
CommSemiring.toSemiring
instIsDomain
Field.toSemifield
Submodule.Quotient.addCommGroup
MvPolynomial
Vars
Semifield.toCommSemiring
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
maxIdeal
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
GroupWithZero.toNoZeroSMulDivisors
DivisionSemiring.toGroupWithZero
SubNegMonoid.toAddMonoid
SubNegZeroMonoid.toSubNegMonoid
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
IsAlgClosure.of_splits
instIsDomain
Algebra.IsAlgebraic.isIntegral
isAlgebraic
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
Ideal.instIsTwoSided_1
Monics.map_eq_prod
Polynomial.Splits.prod
Polynomial.Splits.map
Polynomial.Splits.X_sub_C
instIsAlgClosureOfIsAlgebraic 📖mathematicalIsAlgClosure
AlgebraicClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instField
instAlgebra
CommRing.toCommSemiring
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
CommSemiring.toSemiring
instIsDomain
Field.toSemifield
Submodule.Quotient.addCommGroup
MvPolynomial
Vars
Semifield.toCommSemiring
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
maxIdeal
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
GroupWithZero.toNoZeroSMulDivisors
DivisionSemiring.toGroupWithZero
SubNegMonoid.toAddMonoid
SubNegZeroMonoid.toSubNegMonoid
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
isAlgClosed
Algebra.IsAlgebraic.trans
instIsScalarTower
IsScalarTower.right
IsDomain.to_noZeroDivisors
isAlgebraic
instIsScalarTower 📖mathematicalIsScalarTower
AlgebraicClosure
Algebra.toSMul
CommSemiring.toSemiring
instSMulOfIsScalarTower
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
AddMonoidWithOne.toAddMonoid
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Module.toDistribMulAction
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
IsScalarTower.right
Ideal.Quotient.isScalarTower
MvPolynomial.isScalarTower
isAlgClosed 📖mathematicalIsAlgClosed
AlgebraicClosure
instField
IsAlgClosure.isAlgClosed
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
instIsAlgClosure
isAlgebraic 📖mathematicalAlgebra.IsAlgebraic
AlgebraicClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
instField
instAlgebra
CommRing.toCommSemiring
Algebra.id
IsIntegral.isAlgebraic
IsLocalRing.toNontrivial
Field.instIsLocalRing
Ideal.instIsTwoSided_1
Ideal.Quotient.mk_surjective
MvPolynomial.induction_on
isIntegral_algebraMap
IsIntegral.add
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
RingHom.instRingHomClass
IsIntegral.mul
Monics.map_eq_prod
Polynomial.eval_prod
Finset.prod_congr
Polynomial.map_sub
Polynomial.eval_sub
Finset.prod_eq_zero
Finset.mem_univ
Polynomial.map_C
Polynomial.eval_C
Polynomial.map_X
Polynomial.eval_X
Sigma.eta
sub_self
le_maxIdeal 📖mathematicalIdeal
MvPolynomial
Vars
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
MvPolynomial.commSemiring
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
spanCoeffs
maxIdeal
Ideal.exists_le_maximal
spanCoeffs_ne_top
spanCoeffs_ne_top 📖Ideal.ne_top_iff_one
spanCoeffs.eq_1
Ideal.span.eq_1
Set.image_univ
Finsupp.mem_span_image_iff_linearCombination
zero_ne_one
NeZero.one
IsLocalRing.toNontrivial
Field.instIsLocalRing
Finset.sum_eq_zero
smul_eq_mul
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
toSplittingField_coeff
Finset.mem_image_of_mem
MulZeroClass.mul_zero
map_sum
DistribMulActionSemiHomClass.toAddMonoidHomClass
NonUnitalAlgSemiHomClass.toDistribMulActionSemiHomClass
Finsupp.sum.eq_1
Finsupp.linearCombination_apply
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
toSplittingField_coeff 📖mathematicalMonics
Finset
Finset.instMembership
DFunLike.coe
AlgHom
MvPolynomial
Vars
Semifield.toCommSemiring
Field.toSemifield
Polynomial.SplittingField
Finset.prod
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
CommRing.toCommMonoid
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.Monic
CommSemiring.toSemiring
MvPolynomial.commSemiring
Polynomial.SplittingField.instField
MvPolynomial.algebra
Algebra.id
Polynomial.SplittingField.instAlgebra
AlgHom.funLike
toSplittingField
Polynomial.coeff
subProdXSubC
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Polynomial.instCommRingSplittingField
AlgHomClass.toRingHomClass
AlgHom.algHomClass
Polynomial.map_sub
Polynomial.map_prod
Finset.prod_congr
Polynomial.map_X
Polynomial.map_C
MvPolynomial.aeval_X
instIsDomain
Monics.splits_finsetProd
Equiv.prod_comp
Equiv.apply_symm_apply
Finset.prod_coe_sort
Finset.prod_eq_multiset_prod
Multiset.map_map
Multiset.map_toEnumFinset_fst
Polynomial.map_map
AlgHom.comp_algebraMap
Polynomial.Splits.eq_prod_roots
Polynomial.leadingCoeff_map
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
map_one
MonoidHomClass.toOneHomClass
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
Polynomial.C_1
one_mul
sub_self
Polynomial.coeff_zero

AlgebraicClosure.Monics

Theorems

NameKindAssumesProvesValidatesDepends On
map_eq_prod 📖mathematicalPolynomial.map
AlgebraicClosure
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
AlgebraicClosure.instField
algebraMap
AlgebraicClosure.instAlgebra
Algebra.id
Polynomial
Polynomial.Monic
Finset.prod
Polynomial.natDegree
HasQuotient.Quotient
MvPolynomial
AlgebraicClosure.Vars
Ideal
Ring.toSemiring
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Ideal.instHasQuotient
AlgebraicClosure.maxIdeal
Ideal.Quotient.ring
Ideal.instIsTwoSided_1
CommRing.toCommMonoid
Polynomial.commRing
Ideal.Quotient.commRing
Finset.univ
Fin.fintype
MvPolynomial.commSemiring
Polynomial.instSub
Polynomial.X
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
MvPolynomial.X
AlgebraicClosure.Monics
Polynomial.ext
Ideal.instIsTwoSided_1
Ideal.Quotient.mk_comp_algebraMap
Polynomial.map_map
Polynomial.map_prod
sub_eq_zero
Polynomial.coeff_sub
Polynomial.map_sub
AlgebraicClosure.subProdXSubC.eq_1
Polynomial.coeff_map
Ideal.Quotient.eq_zero_iff_mem
AlgebraicClosure.le_maxIdeal
Ideal.subset_span
splits_finsetProd 📖mathematicalAlgebraicClosure.Monics
Finset
Finset.instMembership
Polynomial.Splits
Polynomial.SplittingField
Finset.prod
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommRing.toCommMonoid
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Polynomial.Monic
Polynomial.SplittingField.instField
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
Polynomial.SplittingField.instAlgebra
Algebra.id
Polynomial.splits_prod_iff
instIsDomain
Polynomial.map_ne_zero
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.Monic.ne_zero
Polynomial.map_prod
Polynomial.SplittingField.splits

AlgebraicClosure.maxIdeal

Theorems

NameKindAssumesProvesValidatesDepends On
isMaximal 📖mathematicalIdeal.IsMaximal
MvPolynomial
AlgebraicClosure.Vars
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
MvPolynomial.commSemiring
AlgebraicClosure.maxIdeal
Ideal.exists_le_maximal
AlgebraicClosure.spanCoeffs_ne_top

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic 📖mathematicalIsAlgClosure
AlgebraicClosure
IntermediateField
SetLike.instMembership
instSetLike
toField
EuclideanDomain.toCommRing
Field.toEuclideanDomain
AlgebraicClosure.instField
AlgebraicClosure.instAlgebra
CommRing.toCommSemiring
algebra'
Algebra.toSMul
Semifield.toCommSemiring
Field.toSemifield
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
Submodule.Quotient.addCommGroup
MvPolynomial
AlgebraicClosure.Vars
CommRing.toRing
MvPolynomial.instCommRingMvPolynomial
Ring.toAddCommGroup
Semiring.toModule
Ring.toSemiring
AlgebraicClosure.maxIdeal
GroupWithZero.toNoZeroSMulDivisors
DivisionSemiring.toGroupWithZero
SubNegMonoid.toAddMonoid
SubNegZeroMonoid.toSubNegMonoid
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
AddCommGroup.toAddCommMonoid
IsScalarTower.left
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
AlgebraicClosure.isAlgClosed
Algebra.IsAlgebraic.trans
AlgebraicClosure.instIsScalarTower
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
IsScalarTower.right
SubsemiringClass.noZeroDivisors
IsDomain.to_noZeroDivisors
AlgebraicClosure.isAlgebraic

IntermediateField.AdjoinDouble

Theorems

NameKindAssumesProvesValidatesDepends On
normal_algebraicClosure 📖mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Normal
AlgebraicClosure
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instInsert
Set.instSingletonSet
IntermediateField.toField
AlgebraicClosure.instField
AlgebraicClosure.instAlgebra
Semifield.toCommSemiring
Field.toSemifield
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
IntermediateField.isAlgebraic_adjoin_pair
IsAlgClosure.normal
IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic

IntermediateField.AdjoinSimple

Theorems

NameKindAssumesProvesValidatesDepends On
normal_algebraicClosure 📖mathematicalIsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
Normal
AlgebraicClosure
IntermediateField
SetLike.instMembership
IntermediateField.instSetLike
IntermediateField.adjoin
Set
Set.instSingletonSet
IntermediateField.toField
AlgebraicClosure.instField
AlgebraicClosure.instAlgebra
Semifield.toCommSemiring
Field.toSemifield
IntermediateField.algebra'
Algebra.toSMul
CommSemiring.toSemiring
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Module.toDistribMulAction
Algebra.toModule
IsScalarTower.left
IntermediateField.isAlgebraic_adjoin_simple
IsAlgClosure.normal
IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic

---

← Back to Index