Documentation Verification Report

Basic

πŸ“ Source: Mathlib/FieldTheory/IsAlgClosed/Basic.lean

Statistics

MetricCount
DefinitionsalgHomEquivAlgHomOfSplits, algHomEquivAlgHomOfSplits, IsAlgClosure, equiv, equivOfAlgebraic, equivOfAlgebraic', equivOfEquiv, equivOfEquivAux
8
TheoremsalgHomEquivAlgHomOfSplits_apply_apply, range_eval_eq_rootSet_minpoly, algHomEquivAlgHomOfSplits_apply, algHomEquivAlgHomOfSplits_apply_apply, algHomEquivAlgHomOfSplits_symm_apply, eq_bot_of_isAlgClosed_of_isAlgebraic, algebraMap_bijective_of_isIntegral, associated_iff_roots_eq_roots, card_aroots_eq_natDegree, card_aroots_eq_natDegree_of_isUnit_leadingCoeff, card_aroots_eq_natDegree_of_leadingCoeff_ne_zero, card_roots_eq_natDegree, card_roots_map_eq_natDegree_from_simpleRing, card_roots_map_eq_natDegree_of_injective, card_roots_map_eq_natDegree_of_isUnit_leadingCoeff, card_roots_map_eq_natDegree_of_leadingCoeff_ne_zero, degree_eq_one_of_irreducible, dvd_iff_roots_le_roots, eval_surjective, exists_aeval_eq_zero, exists_aeval_eq_zero_of_injective, exists_eq_mul_self, exists_evalβ‚‚_eq_zero, exists_evalβ‚‚_eq_zero_of_injective, exists_pow_nat_eq, exists_root, instInfinite, instIsAlgClosure, nonempty_algEquiv_or_of_finrank_eq_two, of_exists_root, of_ringEquiv, perfectField, perfectRing, ringHom_bijective_of_isIntegral, roots_eq_zero_iff, roots_eq_zero_iff_degree_nonpos, roots_eq_zero_iff_natDegree_eq_zero, splits, splits_codomain, splits_domain, surjective_restrictDomain_of_isAlgebraic, equivOfEquiv_algebraMap, equivOfEquiv_comp_algebraMap, equivOfEquiv_symm_algebraMap, equivOfEquiv_symm_comp_algebraMap, isAlgClosed, isAlgebraic, normal, ofAlgebraic, of_splits, separable, isCoprime_iff_aeval_ne_zero_of_isAlgClosed, isRoot_of_isRoot_iff_dvd_derivative_mul, isAlgClosure_iff
54
Total62

Algebra.IsAlgebraic

Definitions

NameCategoryTheorems
algHomEquivAlgHomOfSplits πŸ“–CompOp
1 mathmath: algHomEquivAlgHomOfSplits_apply_apply

Theorems

NameKindAssumesProvesValidatesDepends On
algHomEquivAlgHomOfSplits_apply_apply πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
minpoly
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
AlgHom
AlgHom.funLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
algHomEquivAlgHomOfSplits
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
β€”β€”
range_eval_eq_rootSet_minpoly πŸ“–mathematicalβ€”Set.range
AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
DFunLike.coe
AlgHom.funLike
Polynomial.rootSet
EuclideanDomain.toCommRing
Field.toEuclideanDomain
minpoly
DivisionRing.toRing
Field.toDivisionRing
instIsDomain
β€”range_eval_eq_rootSet_minpoly_of_splits
IsAlgClosed.splits

IntermediateField

Definitions

NameCategoryTheorems
algHomEquivAlgHomOfSplits πŸ“–CompOp
3 mathmath: algHomEquivAlgHomOfSplits_symm_apply, algHomEquivAlgHomOfSplits_apply_apply, algHomEquivAlgHomOfSplits_apply

Theorems

NameKindAssumesProvesValidatesDepends On
algHomEquivAlgHomOfSplits_apply πŸ“–mathematicalPolynomial.Splits
IntermediateField
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
minpoly
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
Equiv
AlgHom
EquivLike.toFunLike
Equiv.instEquivLike
algHomEquivAlgHomOfSplits
AlgHom.comp
val
β€”IsScalarTower.left
algHomEquivAlgHomOfSplits_apply_apply πŸ“–mathematicalPolynomial.Splits
IntermediateField
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
minpoly
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
AlgHom
AlgHom.funLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
algHomEquivAlgHomOfSplits
RingHom
Semiring.toNonAssocSemiring
SubsemiringClass.toCommSemiring
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass
RingHom.instFunLike
instAlgebraSubtypeMem
β€”IsScalarTower.left
algHomEquivAlgHomOfSplits_symm_apply πŸ“–mathematicalPolynomial.Splits
IntermediateField
SetLike.instMembership
instSetLike
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
toField
Polynomial.map
CommSemiring.toSemiring
Semifield.toCommSemiring
algebraMap
algebra'
Algebra.toSMul
Algebra.id
IsScalarTower.left
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DistribMulAction.toMulAction
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Module.toDistribMulAction
Algebra.toModule
minpoly
DivisionRing.toRing
Field.toDivisionRing
DFunLike.coe
Equiv
AlgHom
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
algHomEquivAlgHomOfSplits
AlgHom.codRestrict
toSubalgebra
β€”IsScalarTower.left
eq_bot_of_isAlgClosed_of_isAlgebraic πŸ“–mathematicalβ€”Bot.bot
IntermediateField
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
instCompleteLattice
BoundedOrder.toOrderBot
CompleteLattice.toBoundedOrder
β€”IsScalarTower.left
bot_unique
IsAlgClosed.algebraMap_bijective_of_isIntegral
instIsDomain
Algebra.IsAlgebraic.isIntegral
SubringClass.toSubsemiringClass
SubfieldClass.toSubringClass
instSubfieldClass

IsAlgClosed

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_bijective_of_isIntegral πŸ“–mathematicalβ€”Function.Bijective
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Semifield.toCommSemiring
Field.toSemifield
Ring.toSemiring
RingHom.instFunLike
algebraMap
β€”RingHom.injective
DivisionRing.isSimpleRing
IsDomain.toNontrivial
minpoly.monic
Algebra.IsIntegral.isIntegral
degree_eq_one_of_irreducible
minpoly.irreducible
instIsDomain
minpoly.aeval
add_eq_zero_iff_eq_neg
Polynomial.aeval_C
Polynomial.aeval_X
Polynomial.aeval_add
one_mul
Polynomial.C_1
Polynomial.eq_X_add_C_of_degree_eq_one
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
associated_iff_roots_eq_roots πŸ“–mathematicalβ€”Associated
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
β€”instIsDomain
Associated.roots_eq
associated_of_dvd_dvd
Polynomial.instIsLeftCancelMulZeroOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
dvd_iff_roots_le_roots
le_of_eq
card_aroots_eq_natDegree πŸ“–mathematicalβ€”Multiset.card
Polynomial.aroots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Polynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”card_roots_map_eq_natDegree_of_injective
FaithfulSMul.algebraMap_injective
card_aroots_eq_natDegree_of_isUnit_leadingCoeff πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
CommRing.toCommSemiring
Polynomial.leadingCoeff
Multiset.card
Polynomial.aroots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Polynomial.natDegree
β€”card_roots_map_eq_natDegree_of_isUnit_leadingCoeff
card_aroots_eq_natDegree_of_leadingCoeff_ne_zero πŸ“–mathematicalβ€”Multiset.card
Polynomial.aroots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Polynomial.natDegree
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”card_roots_map_eq_natDegree_of_leadingCoeff_ne_zero
card_roots_eq_natDegree πŸ“–mathematicalβ€”Multiset.card
Polynomial.roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Polynomial.natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”instIsDomain
Polynomial.exists_prod_multiset_X_sub_C_mul
roots_eq_zero_iff_natDegree_eq_zero
add_zero
card_roots_map_eq_natDegree_from_simpleRing πŸ“–mathematicalβ€”Multiset.card
Polynomial.roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Polynomial.map
Ring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.natDegree
β€”instIsDomain
card_roots_eq_natDegree
Polynomial.natDegree_map
IsLocalRing.toNontrivial
Field.instIsLocalRing
card_roots_map_eq_natDegree_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
Multiset.card
Polynomial.roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Polynomial.map
Polynomial.natDegree
β€”instIsDomain
card_roots_eq_natDegree
Polynomial.natDegree_map_eq_of_injective
card_roots_map_eq_natDegree_of_isUnit_leadingCoeff πŸ“–mathematicalIsUnit
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.leadingCoeff
Multiset.card
Polynomial.roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Polynomial.map
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.natDegree
β€”instIsDomain
card_roots_eq_natDegree
Polynomial.natDegree_map_eq_of_isUnit_leadingCoeff
IsLocalRing.toNontrivial
Field.instIsLocalRing
card_roots_map_eq_natDegree_of_leadingCoeff_ne_zero πŸ“–mathematicalβ€”Multiset.card
Polynomial.roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Polynomial.map
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Polynomial.natDegree
β€”instIsDomain
card_roots_eq_natDegree
Polynomial.natDegree_map_of_leadingCoeff_ne_zero
degree_eq_one_of_irreducible πŸ“–mathematicalIrreducible
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Polynomial.semiring
Polynomial.degree
WithBot
WithBot.one
Nat.instOne
β€”Polynomial.Splits.degree_eq_one_of_irreducible
splits
dvd_iff_roots_le_roots πŸ“–mathematicalβ€”Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
Polynomial.commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Multiset
Preorder.toLE
PartialOrder.toPreorder
Multiset.instPartialOrder
Polynomial.roots
instIsDomain
β€”Polynomial.Splits.dvd_iff_roots_le_roots
splits
eval_surjective πŸ“–mathematicalβ€”Polynomial.eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Polynomial.Splits.exists_eval_eq_zero
splits
Polynomial.degree_sub_C
Polynomial.natDegree_pos_iff_degree_pos
LT.lt.ne'
Polynomial.eval_sub
Polynomial.eval_C
exists_aeval_eq_zero πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
Polynomial.semiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”exists_aeval_eq_zero_of_injective
FaithfulSMul.algebraMap_injective
exists_aeval_eq_zero_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Algebra.id
AlgHom.funLike
Polynomial.aeval
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”exists_evalβ‚‚_eq_zero_of_injective
exists_eq_mul_self πŸ“–mathematicalβ€”Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”Nat.instAtLeastTwoHAddOfNat
exists_pow_nat_eq
zero_lt_two
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
sq
exists_evalβ‚‚_eq_zero πŸ“–mathematicalβ€”Polynomial.evalβ‚‚
Ring.toSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”exists_evalβ‚‚_eq_zero_of_injective
RingHom.injective
IsLocalRing.toNontrivial
Field.instIsLocalRing
exists_evalβ‚‚_eq_zero_of_injective πŸ“–mathematicalDFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
Polynomial.evalβ‚‚
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
β€”exists_root
Polynomial.degree_map_eq_of_injective
Polynomial.evalβ‚‚_eq_eval_map
Polynomial.IsRoot.eq_1
exists_pow_nat_eq πŸ“–mathematicalβ€”Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Polynomial.degree_X_pow_sub_C
IsLocalRing.toNontrivial
Field.instIsLocalRing
ne_of_gt
WithBot.coe_lt_coe
exists_root
sub_eq_zero
Polynomial.eval_sub
Polynomial.eval_pow
Polynomial.eval_X
Polynomial.eval_C
exists_root πŸ“–mathematicalβ€”Polynomial.IsRoot
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Polynomial.Splits.exists_eval_eq_zero
splits
instInfinite πŸ“–mathematicalβ€”Infiniteβ€”Infinite.of_not_fintype
Polynomial.separable_X_pow_sub_C
Nat.cast_add
Nat.cast_card_eq_zero
Nat.cast_one
zero_add
NeZero.one
IsLocalRing.toNontrivial
Field.instIsLocalRing
one_ne_zero
instIsDomain
Polynomial.card_rootSet_eq_natDegree
splits_domain
Polynomial.C_1
Polynomial.natDegree_X_pow_sub_C
Fintype.card_le_of_injective
Subtype.coe_injective
instIsAlgClosure πŸ“–mathematicalβ€”IsAlgClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.id
CommRing.toCommSemiring
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
CommSemiring.toSemiring
instIsDomain
Field.toSemifield
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
GroupWithZero.toNoZeroSMulDivisors
DivisionSemiring.toGroupWithZero
SubNegMonoid.toAddMonoid
SubNegZeroMonoid.toSubNegMonoid
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
Algebra.IsAlgebraic.of_finite
IsLocalRing.toNontrivial
Field.instIsLocalRing
Module.instFiniteDimensionalOfIsReflexive
Module.instIsReflexiveOfFiniteOfProjective
FiniteDimensional.finiteDimensional_self
Module.Projective.of_free
Module.Free.self
nonempty_algEquiv_or_of_finrank_eq_two πŸ“–mathematicalModule.finrank
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Algebra.toModule
Semifield.toCommSemiring
AlgEquiv
Algebra.id
β€”instIsDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
GroupWithZero.toNoZeroSMulDivisors
IsLocalRing.toNontrivial
Field.instIsLocalRing
Subalgebra.isSimpleOrder_of_finrank
IsSimpleOrder.eq_bot_or_eq_top
of_exists_root πŸ“–mathematicalPolynomial.eval
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
IsAlgClosedβ€”Polynomial.monic_mul_leadingCoeff_inv
Irreducible.ne_zero
Polynomial.irreducible_mul_leadingCoeff_inv
Polynomial.eval_mul
Polynomial.eval_C
IsDomain.to_noZeroDivisors
instIsDomain
PrincipalIdealRing.to_uniqueFactorizationMonoid
Polynomial.instIsDomainOfIsCancelAdd
AddCancelMonoid.toIsCancelAdd
EuclideanDomain.to_principal_ideal_domain
UniqueFactorizationMonoid.factors_prod
Polynomial.Splits.mul
Polynomial.Splits.multisetProd
UniqueFactorizationMonoid.irreducible_of_factor
Polynomial.Splits.of_degree_eq_one
Polynomial.degree_eq_one_of_irreducible_of_root
IsUnit.splits
Units.isUnit
of_ringEquiv πŸ“–mathematicalβ€”IsAlgClosedβ€”of_exists_root
Polynomial.degree_map
DivisionRing.isSimpleRing
IsLocalRing.toNontrivial
Field.instIsLocalRing
ne_of_gt
Polynomial.degree_pos_of_irreducible
exists_root
RingEquiv.injective
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
Polynomial.IsRoot.eq_1
Polynomial.induction_on
Polynomial.eval_C
Polynomial.map_C
Polynomial.eval_add
map_add
AddMonoidHomClass.toAddHomClass
RingHomClass.toAddMonoidHomClass
Polynomial.map_add
Polynomial.eval_mul
Polynomial.eval_pow
Polynomial.eval_X
map_mul
NonUnitalRingHomClass.toMulHomClass
RingEquivClass.toNonUnitalRingHomClass
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingEquiv.symm_apply_apply
Polynomial.map_mul
Polynomial.map_pow
Polynomial.map_X
perfectField πŸ“–mathematicalβ€”PerfectFieldβ€”CharP.exists'
IsDomain.to_noZeroDivisors
instIsDomain
IsLocalRing.toNontrivial
Field.instIsLocalRing
PerfectField.ofCharZero
PerfectRing.toPerfectField
expChar_prime
perfectRing
perfectRing πŸ“–mathematicalβ€”PerfectRing
Semifield.toCommSemiring
Field.toSemifield
expChar_prime
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”PerfectRing.ofSurjective
expChar_prime
isReduced_of_noZeroDivisors
IsDomain.to_noZeroDivisors
instIsDomain
exists_pow_nat_eq
NeZero.pos
Nat.instCanonicallyOrderedAdd
NeZero.of_gt'
Nat.Prime.one_lt'
ringHom_bijective_of_isIntegral πŸ“–mathematicalRingHom.IsIntegral
EuclideanDomain.toCommRing
Field.toEuclideanDomain
CommRing.toRing
Function.Bijective
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
CommSemiring.toSemiring
CommRing.toCommSemiring
RingHom.instFunLike
β€”algebraMap_bijective_of_isIntegral
roots_eq_zero_iff πŸ“–mathematicalβ€”Polynomial.roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Multiset
Multiset.instZero
DFunLike.coe
RingHom
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Semiring.toNonAssocSemiring
Polynomial.semiring
RingHom.instFunLike
Polynomial.C
Polynomial.coeff
β€”instIsDomain
le_or_gt
Polynomial.eq_C_of_degree_le_zero
exists_root
LT.lt.ne'
Polynomial.mem_roots
Polynomial.ne_zero_of_degree_gt
Polynomial.roots_C
roots_eq_zero_iff_degree_nonpos πŸ“–mathematicalβ€”Polynomial.roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Multiset
Multiset.instZero
WithBot
Preorder.toLE
WithBot.instPreorder
Nat.instPreorder
Polynomial.degree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
WithBot.zero
MulZeroClass.toZero
Nat.instMulZeroClass
β€”instIsDomain
roots_eq_zero_iff_natDegree_eq_zero
Polynomial.natDegree_eq_zero_iff_degree_le_zero
roots_eq_zero_iff_natDegree_eq_zero πŸ“–mathematicalβ€”Polynomial.roots
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsDomain
Field.toSemifield
Multiset
Multiset.instZero
Polynomial.natDegree
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
β€”instIsDomain
roots_eq_zero_iff
Polynomial.eq_C_coeff_zero_iff_natDegree_eq_zero
splits πŸ“–mathematicalβ€”Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”β€”
splits_codomain πŸ“–mathematicalβ€”Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
CommRing.toCommSemiring
β€”splits
splits_domain πŸ“–mathematicalβ€”Polynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
β€”Polynomial.Splits.map
splits
surjective_restrictDomain_of_isAlgebraic πŸ“–mathematicalβ€”AlgHom
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
CommSemiring.toSemiring
AlgHom.restrictDomain
β€”IntermediateField.exists_algHom_of_splits'
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
splits

IsAlgClosure

Definitions

NameCategoryTheorems
equiv πŸ“–CompOpβ€”
equivOfAlgebraic πŸ“–CompOpβ€”
equivOfAlgebraic' πŸ“–CompOpβ€”
equivOfEquiv πŸ“–CompOp
4 mathmath: equivOfEquiv_comp_algebraMap, equivOfEquiv_symm_algebraMap, equivOfEquiv_symm_comp_algebraMap, equivOfEquiv_algebraMap
equivOfEquivAux πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
equivOfEquiv_algebraMap πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
equivOfEquiv
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingHom.ext_iff
equivOfEquiv_comp_algebraMap
equivOfEquiv_comp_algebraMap πŸ“–mathematicalβ€”RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
equivOfEquiv
algebraMap
β€”β€”
equivOfEquiv_symm_algebraMap πŸ“–mathematicalβ€”DFunLike.coe
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquiv.symm
equivOfEquiv
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHom.instFunLike
algebraMap
β€”RingEquiv.injective
RingEquiv.apply_symm_apply
equivOfEquiv_algebraMap
equivOfEquiv_symm_comp_algebraMap πŸ“–mathematicalβ€”RingHom.comp
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
CommRing.toCommSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
RingHomClass.toRingHom
RingEquiv
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
Distrib.toAdd
EquivLike.toFunLike
RingEquiv.instEquivLike
RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingEquiv.symm
equivOfEquiv
algebraMap
β€”RingEquivClass.toRingHomClass
RingEquiv.instRingEquivClass
RingHom.ext_iff
equivOfEquiv_symm_algebraMap
isAlgClosed πŸ“–mathematicalβ€”IsAlgClosedβ€”β€”
isAlgebraic πŸ“–mathematicalβ€”Algebra.IsAlgebraic
DivisionRing.toRing
Field.toDivisionRing
β€”β€”
normal πŸ“–mathematicalβ€”Normalβ€”instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
isAlgebraic
IsAlgClosed.splits
isAlgClosed
ofAlgebraic πŸ“–mathematicalβ€”IsAlgClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
CommSemiring.toSemiring
CommRing.toCommSemiring
instIsDomain
Field.toSemifield
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
GroupWithZero.toNoZeroSMulDivisors
DivisionSemiring.toGroupWithZero
SubNegMonoid.toAddMonoid
SubNegZeroMonoid.toSubNegMonoid
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
β€”instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
isAlgClosed
Algebra.IsAlgebraic.trans
IsDomain.to_noZeroDivisors
isAlgebraic
of_splits πŸ“–mathematicalPolynomial.Splits
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial.map
CommSemiring.toSemiring
CommRing.toCommSemiring
algebraMap
IsAlgClosureβ€”IsAlgClosed.of_exists_root
Irreducible.exists_dvd_monic_irreducible_of_isIntegral
Polynomial.Splits.exists_eval_eq_zero
Polynomial.Splits.of_dvd
instIsDomain
Polynomial.map_monic_ne_zero
IsLocalRing.toNontrivial
Field.instIsLocalRing
Polynomial.degree_ne_of_natDegree_ne
LT.lt.ne'
Irreducible.natDegree_pos
Algebra.IsIntegral.isAlgebraic
IsDomain.toNontrivial
separable πŸ“–mathematicalβ€”Algebra.IsSeparable
EuclideanDomain.toCommRing
Field.toEuclideanDomain
DivisionRing.toRing
Field.toDivisionRing
β€”instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
Irreducible.separable
minpoly.irreducible
Algebra.IsIntegral.isIntegral
Algebra.IsAlgebraic.isIntegral
isAlgebraic

Polynomial

Theorems

NameKindAssumesProvesValidatesDepends On
isCoprime_iff_aeval_ne_zero_of_isAlgClosed πŸ“–mathematicalβ€”IsCoprime
Polynomial
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
commSemiring
Semifield.toCommSemiring
β€”aeval_ne_zero_of_isCoprime
IsLocalRing.toNontrivial
Field.instIsLocalRing
isCoprime_of_dvd
IsBezout.of_isPrincipalIdealRing
EuclideanDomain.to_principal_ideal_domain
Mathlib.Tactic.Contrapose.contrapose₃
map_zero
MonoidWithZeroHomClass.toZeroHomClass
RingHomClass.toMonoidWithZeroHomClass
AlgHomClass.toRingHomClass
AlgHom.algHomClass
IsAlgClosed.exists_root
degree_map
DivisionRing.isSimpleRing
ne_of_lt
degree_pos_of_ne_zero_of_nonunit
not_and_or
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
MulZeroClass.zero_mul
isRoot_of_isRoot_iff_dvd_derivative_mul πŸ“–mathematicalβ€”IsRoot
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Polynomial
semigroupDvd
SemigroupWithZero.toSemigroup
NonUnitalSemiring.toSemigroupWithZero
NonUnitalCommSemiring.toNonUnitalSemiring
NonUnitalCommRing.toNonUnitalCommSemiring
CommRing.toNonUnitalCommRing
commRing
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instMul
DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
semiring
module
Semiring.toModule
LinearMap.instFunLike
derivative
β€”eval_zero
MulZeroClass.mul_zero
eq_C_of_derivative_eq_zero
IsAddTorsionFree.of_isCancelMulZero_charZero
IsDomain.toIsCancelMulZero
instIsDomain
derivative_C
MulZeroClass.zero_mul
mul_ne_zero
instNoZeroDivisors
IsDomain.to_noZeroDivisors
IsAlgClosed.dvd_iff_roots_le_roots
Multiset.le_iff_count
count_roots
rootMultiplicity_mul
rootMultiplicity_pos
derivative_rootMultiplicity_of_root
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
le_rfl
instIsEmptyFalse
rootMultiplicity_eq_zero
Nat.instCanonicallyOrderedAdd
isRoot_of_isRoot_of_dvd_derivative_mul

(root)

Definitions

NameCategoryTheorems
IsAlgClosure πŸ“–CompData
13 mathmath: IntermediateField.instIsAlgClosureAlgebraicClosureSubtypeMemOfIsAlgebraic, IsAlgClosure.of_exists_root, IsAlgClosure.of_exist_roots, IsAlgClosed.instIsAlgClosure, AlgebraicClosure.instIsAlgClosureOfIsAlgebraic, IsAlgClosure.of_splits, AlgebraicClosure.instIsAlgClosure, IsAlgClosure.ofAlgebraic, IsSepClosure.isAlgClosure_of_perfectField_top, algebraicClosure.isAlgClosure, isAlgClosure_iff, IsAlgClosed.isAlgClosure_of_transcendence_basis, IsSepClosure.isAlgClosure_of_perfectField

Theorems

NameKindAssumesProvesValidatesDepends On
isAlgClosure_iff πŸ“–mathematicalβ€”IsAlgClosure
EuclideanDomain.toCommRing
Field.toEuclideanDomain
instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
CommSemiring.toSemiring
CommRing.toCommSemiring
instIsDomain
Field.toSemifield
Ring.toAddCommGroup
DivisionRing.toRing
Field.toDivisionRing
Algebra.toModule
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
GroupWithZero.toNoZeroSMulDivisors
DivisionSemiring.toGroupWithZero
SubNegMonoid.toAddMonoid
SubNegZeroMonoid.toSubNegMonoid
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
Module.toDistribMulAction
AddCommGroup.toAddCommMonoid
IsAlgClosed
Algebra.IsAlgebraic
β€”instIsTorsionFreeOfIsDomainOfNoZeroSMulDivisors
instIsDomain
GroupWithZero.toNoZeroSMulDivisors
IsAlgClosure.isAlgClosed
IsAlgClosure.isAlgebraic

---

← Back to Index